The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025441 Number of partitions of n into 2 distinct nonzero squares. 25
 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,66 LINKS T. D. Noe, Table of n, a(n) for n = 0..10000 Michael Gilleland, Some Self-Similar Integer Sequences Index entries for sequences related to sums of squares FORMULA a(A025302(n)) = 1. - Reinhard Zumkeller, Dec 20 2013 a(n) = Sum_{ m: m^2|n } A157228(n/m^2). - Andrey Zabolotskiy, May 07 2018 a(n) = [x^n y^2] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019 a(n) = Sum_{i=1..floor((n-1)/2)} c(i) * c(n-i), where c is the square characteristic (A010052). - Wesley Ivan Hurt, Nov 26 2020 a(n) = A000161(n) - A093709(n). - Andrey Zabolotskiy, Apr 12 2022 MATHEMATICA Table[Count[PowersRepresentations[n, 2, 2], pr_ /; Unequal @@ pr && FreeQ[pr, 0]], {n, 0, 107}] (* Jean-François Alcover, Mar 01 2019 *) PROG (Haskell) a025441 n = sum \$ map (a010052 . (n -)) \$ takeWhile (< n `div` 2) \$ tail a000290_list -- Reinhard Zumkeller, Dec 20 2013 (PARI) a(n)=if(n>4, sum(k=1, sqrtint((n-1)\2), issquare(n-k^2)), 0) \\ Charles R Greathouse IV, Jun 10 2016 (PARI) a(n)=if(n<5, return(0)); my(v=valuation(n, 2), f=factor(n>>v), t=1); for(i=1, #f[, 1], if(f[i, 1]%4==1, t*=f[i, 2]+1, if(f[i, 2]%2, return(0)))); if(t%2, t-(-1)^v, t)/2-issquare(n/2) \\ Charles R Greathouse IV, Jun 10 2016 (Python) from math import prod from sympy import factorint def A025441(n): f = factorint(n).items() return -int(not (any((e-1 if p == 2 else e)&1 for p, e in f) or n&1)) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 0 # Chai Wah Wu, Sep 08 2022 CROSSREFS Cf. A060306 gives records; A052199 gives where records occur. Cf. A000161, A000290, A010052, A025435, A157228, A053866, A145393, A093709. Column k=2 of A341040. Cf. A004439 (a(n)=0), A025302 (a(n)=1), A025303 (a(n)=2), A025304 (a(n)=3), A025305 (a(n)=4), A025306 (a(n)=5), A025307 (a(n)=6), A025308 (a(n)=7), A025309 (a(n)=8), A025310 (a(n)=9), A025311 (a(n)=10), A004431 (a(n)>0). Sequence in context: A178602 A363711 A216279 * A286813 A176891 A219486 Adjacent sequences: A025438 A025439 A025440 * A025442 A025443 A025444 KEYWORD nonn AUTHOR David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 05:07 EDT 2024. Contains 372703 sequences. (Running on oeis4.)