OFFSET
0,66
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10000
Michael Gilleland, Some Self-Similar Integer Sequences
FORMULA
a(A025302(n)) = 1. - Reinhard Zumkeller, Dec 20 2013
a(n) = Sum_{ m: m^2|n } A157228(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = [x^n y^2] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019
a(n) = Sum_{i=1..floor((n-1)/2)} c(i) * c(n-i), where c is the square characteristic (A010052). - Wesley Ivan Hurt, Nov 26 2020
MATHEMATICA
Table[Count[PowersRepresentations[n, 2, 2], pr_ /; Unequal @@ pr && FreeQ[pr, 0]], {n, 0, 107}] (* Jean-François Alcover, Mar 01 2019 *)
PROG
(Haskell)
a025441 n = sum $ map (a010052 . (n -)) $
takeWhile (< n `div` 2) $ tail a000290_list
-- Reinhard Zumkeller, Dec 20 2013
(PARI) a(n)=if(n>4, sum(k=1, sqrtint((n-1)\2), issquare(n-k^2)), 0) \\ Charles R Greathouse IV, Jun 10 2016
(PARI) a(n)=if(n<5, return(0)); my(v=valuation(n, 2), f=factor(n>>v), t=1); for(i=1, #f[, 1], if(f[i, 1]%4==1, t*=f[i, 2]+1, if(f[i, 2]%2, return(0)))); if(t%2, t-(-1)^v, t)/2-issquare(n/2) \\ Charles R Greathouse IV, Jun 10 2016
(Python)
from math import prod
from sympy import factorint
def A025441(n):
f = factorint(n).items()
return -int(not (any((e-1 if p == 2 else e)&1 for p, e in f) or n&1)) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 0 # Chai Wah Wu, Sep 08 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved