login
A025435
Number of partitions of n into 2 distinct squares.
11
0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0
OFFSET
0,26
COMMENTS
a(A004435(n)) = 0; a(A001983(n)) > 0. - Reinhard Zumkeller, Dec 20 2013
LINKS
FORMULA
a(n) = A000161(n) - A010052(2*n). - M. F. Hasler, Aug 05 2018
a(n) = Sum_{i=1..n} c(i) * c(2*n-i), where c is the square characteristic (A010052). - Wesley Ivan Hurt, Nov 26 2020
EXAMPLE
G.f. = x + x^4 + x^5 + x^9 + x^10 + x^13 + x^16 + x^17 + x^20 + 2*x^25 + ...
MAPLE
A025435 := proc(n)
local i, j, ans;
ans := 0;
for i from 0 to n do
for j from i+1 to n do
if i^2+j^2=n then
ans := ans+1
fi
end do
end do;
ans ;
end proc: # R. J. Mathar, Aug 04 2018
MATHEMATICA
a[ n_] := If[ n < 0, 0, Sum[ Boole[ n == i^2 + j^2], {i, Sqrt[n]}, {j, 0, i - 1}]]; (* Michael Somos, Jun 24 2015 *)
a[ n_] := Length@ PowersRepresentations[ n, 2, 2] - Boole @ IntegerQ @ Sqrt[2 n]; (* Michael Somos, Jun 24 2015 *)
a[ n_] := SeriesCoefficient[ With[ {f = (EllipticTheta[ 3, 0, x] + 1)/2, g = (EllipticTheta[ 3, 0, x^2] + 1)/2}, f f - g] / 2, {x, 0, n}]; (* Michael Somos, Jun 24 2015 *)
PROG
(Haskell)
a025435 0 = 0
a025435 n = a010052 n + sum
(map (a010052 . (n -)) $ takeWhile (< n `div` 2) $ tail a000290_list)
-- Reinhard Zumkeller, Dec 20 2013
(PARI) {a(n) = if( n<0, 0, sum(i=1, sqrtint(n), sum(j=0, i-1, n == i^2 + j^2)))}; /* Michael Somos, Jun 24 2015 */
(PARI) A025435(n)=sum(k=sqrtint((n-1+!n)\2)+1, sqrtint(n), issquare(n-k^2))-issquare(n/2) \\ or A000161(n)-issquare(n/2). - M. F. Hasler, Aug 05 2018
(Python)
from math import prod
from sympy import factorint
def A025435(n):
f = factorint(n)
return int(not any(e&1 for p, e in f.items() if p>2))*(1-((f.get(2, 0)&1)<<1)) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f.items()))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 0 # Chai Wah Wu, Sep 08 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved