OFFSET
0,26
COMMENTS
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = Sum_{i=1..n} c(i) * c(2*n-i), where c is the square characteristic (A010052). - Wesley Ivan Hurt, Nov 26 2020
EXAMPLE
G.f. = x + x^4 + x^5 + x^9 + x^10 + x^13 + x^16 + x^17 + x^20 + 2*x^25 + ...
MAPLE
A025435 := proc(n)
local i, j, ans;
ans := 0;
for i from 0 to n do
for j from i+1 to n do
if i^2+j^2=n then
ans := ans+1
fi
end do
end do;
ans ;
end proc: # R. J. Mathar, Aug 04 2018
MATHEMATICA
a[ n_] := If[ n < 0, 0, Sum[ Boole[ n == i^2 + j^2], {i, Sqrt[n]}, {j, 0, i - 1}]]; (* Michael Somos, Jun 24 2015 *)
a[ n_] := Length@ PowersRepresentations[ n, 2, 2] - Boole @ IntegerQ @ Sqrt[2 n]; (* Michael Somos, Jun 24 2015 *)
a[ n_] := SeriesCoefficient[ With[ {f = (EllipticTheta[ 3, 0, x] + 1)/2, g = (EllipticTheta[ 3, 0, x^2] + 1)/2}, f f - g] / 2, {x, 0, n}]; (* Michael Somos, Jun 24 2015 *)
PROG
(Haskell)
a025435 0 = 0
a025435 n = a010052 n + sum
(map (a010052 . (n -)) $ takeWhile (< n `div` 2) $ tail a000290_list)
-- Reinhard Zumkeller, Dec 20 2013
(PARI) {a(n) = if( n<0, 0, sum(i=1, sqrtint(n), sum(j=0, i-1, n == i^2 + j^2)))}; /* Michael Somos, Jun 24 2015 */
(PARI) A025435(n)=sum(k=sqrtint((n-1+!n)\2)+1, sqrtint(n), issquare(n-k^2))-issquare(n/2) \\ or A000161(n)-issquare(n/2). - M. F. Hasler, Aug 05 2018
(Python)
from math import prod
from sympy import factorint
def A025435(n):
f = factorint(n)
return int(not any(e&1 for p, e in f.items() if p>2))*(1-((f.get(2, 0)&1)<<1)) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f.items()))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 0 # Chai Wah Wu, Sep 08 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved