login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A025434
Number of partitions of n into 10 nonzero squares.
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 2, 4, 1, 2, 5, 2, 4, 4, 2, 5, 4, 2, 5, 6, 4, 5, 6, 4, 5, 6, 5, 7, 9, 5, 7, 10, 5, 7, 11, 6, 11, 10, 6, 12, 10, 7, 13, 14, 10, 12, 14, 11, 12, 14, 12, 16, 19, 12, 16, 19, 12, 16, 22, 15, 21, 21, 15
OFFSET
0,26
FORMULA
a(n) = [x^n y^10] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(l) * A010052(m) * A010052(o) * A010052(p) * A010052(q) *A010052(r) * A010052(n-i-j-k-l-m-o-p-q-r). - Wesley Ivan Hurt, Apr 19 2019
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(i^2>n, 0, b(n-i^2, i, t-1))))
end:
a:= n-> b(n, isqrt(n), 10):
seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^2 > n, 0, b[n - i^2, i, t - 1]]]];
a[n_] := b[n, Sqrt[n] // Floor, 10];
a /@ Range[0, 120] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
CROSSREFS
Column k=10 of A243148.
Cf. A010052.
Sequence in context: A276417 A025432 A025433 * A111178 A279187 A254434
KEYWORD
nonn
STATUS
approved