login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279187
Maximal entry in row c of A279185, where c = n-th composite number A002808(n).
4
1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 4, 2, 6, 2, 1, 1, 4, 1, 2, 2, 6, 2, 1, 2, 4, 2, 10, 1, 6, 4, 1, 2, 6, 4, 2, 6, 3, 1, 4, 2, 1, 2, 4, 1, 10, 2, 2, 6, 4, 6, 4, 2, 1, 18, 4, 2, 1, 6, 3, 4, 2, 2, 10, 4, 11, 6, 1, 6, 4, 4, 1, 2, 2, 12, 6, 4, 6, 2, 6, 10, 3, 2
OFFSET
1,4
COMMENTS
There are really two sequences that should be included if missing: the maximal entry in row c, and the LCM of the entries in row c.
a(n) and the LCM variant A256608(A002808(n)) are equal at least up to n<=1100. - R. J. Mathar, Dec 15 2016
LINKS
MAPLE
A279187 := proc(n)
end proc :
seq(A279187(n), n=1..180) ; # R. J. Mathar, Dec 15 2016
MATHEMATICA
T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]]; Composite[n_] := FixedPoint[n + PrimePi[#] + 1&, n + PrimePi[n] + 1];
a[n_] := a[n] = With[{c = Composite[n]}, Table[T[c, k], {k, 0, c-1}] // Max ];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 86}] (* Jean-François Alcover, Nov 27 2017, after Robert Israel *)
CROSSREFS
Cf. A002808, A256608 (lcm of entries in row n), A279185, A279186 (max entry in row n).
Sequence in context: A025433 A025434 A111178 * A254434 A076845 A161906
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 14 2016
STATUS
approved