login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279185
Triangle read by rows: T(n,k) (n>=1, 0 <=k<=n-1) is the length of the period of the sequence obtained by starting with k and repeatedly squaring mod n.
11
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1
OFFSET
1,24
COMMENTS
Fix n. Start with k (0 <= k <= n-1) and repeatedly square and reduce mod n until this repeats; T(n,k) is the length of the cycle that is reached.
A279186 gives maximal entry in each row.
A037178 gives maximal entry in row p, p = n-th prime.
A279187 gives maximal entry in row c, c = n-th composite number.
A279188 gives maximal entry in row c, c = prime(n)^2.
A256608 gives LCM of entries in row n.
A256607 gives T(2,n).
LINKS
Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 141, flattened)
Haifeng Xu, The largest cycles consist by the quadratic residues and Fermat primes, arXiv:1601.06509 [math.NT], 2016.
EXAMPLE
The triangle begins:
1,
1,1,
1,1,1,
1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,1,
1,1,2,2,2,2,1,
1,1,1,1,1,1,1,1,
1,1,2,1,2,2,1,2,1,
1,1,1,1,1,1,1,1,1,1,
1,1,4,4,4,4,4,4,4,4,1,
...
For example, if n=11 and k=2, repeatedly squaring mod 11 gives the sequence 2, 4, 5, 3, 9, 4, 5, 3, 9, 4, 5, 3, ..., which has period T(11,2) = 4.
MAPLE
A279185 := proc(k, n) local g, y, r;
if k = 0 then return 1 fi;
y:= n;
g:= igcd(k, y);
while g > 1 do
y:= y/g;
g:= igcd(k, y);
od;
if y = 1 then return 1 fi;
r:= numtheory:-order(k, y);
r:= r/2^padic:-ordp(r, 2);
if r = 1 then return 1 fi;
numtheory:-order(2, r)
end proc:
seq(seq(A279185(k, n), k=0..n-1), n=1..20); # Robert Israel, Dec 14 2016
MATHEMATICA
T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]];
Table[T[n, k], {n, 1, 13}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 27 2017, after Robert Israel *)
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Dec 14 2016
STATUS
approved