login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279189
Primes p such that L(p^2) = (p-1)*L(p), where L(i) = A279186(i).
3
2, 3, 5, 29, 179, 293, 317, 467, 509, 659, 797, 1427, 1949, 2213, 2339, 2579, 2909, 3677, 4157, 4229, 4253, 4349, 5309, 5573, 5693, 5843, 5939, 6173, 6269, 6653, 6899, 6947, 7043, 7517, 7589, 8387, 8573, 8819, 9059, 9533, 10067, 10163, 10259, 10589, 11069, 11549, 11939, 13763, 14627, 15443
OFFSET
1,1
COMMENTS
Also, union of {2} and the primes p from A001122 such that gcd(p-1,A007733(p-1)) = 1. - Max Alekseyev, Feb 02 2024
MATHEMATICA
T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]];
L[n_] := L[n] = Table[T[n, k], {k, 0, n - 1}] // Max;
For[p = 2, p < 1000, p = NextPrime[p], If[L[p^2] == (p-1) L[p], Print[p]]] (* Jean-François Alcover, Oct 07 2018, after Robert Israel in A279186 *)
CROSSREFS
Excluding a(1)=2, forms a subsequence of A001122.
Sequence in context: A084599 A062167 A358896 * A107451 A093490 A073309
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 14 2016
EXTENSIONS
a(8)-a(11) from Jean-François Alcover, Oct 07 2018
Terms a(12) onward from Max Alekseyev, Feb 02 2024
STATUS
approved