login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279186 Maximal entry in n-th row of A279185. 8
1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 2, 1, 1, 1, 2, 6, 1, 2, 4, 10, 1, 4, 2, 6, 2, 3, 1, 4, 1, 4, 1, 2, 2, 6, 6, 2, 1, 4, 2, 6, 4, 2, 10, 11, 1, 6, 4, 1, 2, 12, 6, 4, 2, 6, 3, 28, 1, 4, 4, 2, 1, 2, 4, 10, 1, 10, 2, 12, 2, 6, 6, 4, 6, 4, 2, 12, 1, 18, 4, 20, 2, 1, 6, 3, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

See A256608 for LCM of entries in row n.

From Robert Israel, Dec 15 2016: (Start)

If m and k are coprime then a(m*k) = lcm(a(m), a(k)).

If n is in A061345 and r = A053575(n) is in A167791, then a(n) = A000010(r). (End)

LINKS

R. J. Mathar, Table of n, a(n) for n = 1..1000

MAPLE

A279186 := proc(n)

    local a, k ;

    a := 1 ;

    for k from 0 to n-1 do

        a := max(a, A279185(k, n)) ;

    end do:

    a ;

end proc : # R. J. Mathar, Dec 15 2016

MATHEMATICA

T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]];

a[n_] := Table[T[n, k], {k, 0, n - 1}] // Max;

Array[a, 90] (* Jean-Fran├žois Alcover, Nov 27 2017, after Robert Israel *)

CROSSREFS

Cf. A000010, A053575, A063145, A167791, A279185.

Start is same as A256607 and A256608. However, all three are different.

Sequence in context: A280726 A256607 A256608 * A164799 A274451 A193787

Adjacent sequences:  A279183 A279184 A279185 * A279187 A279188 A279189

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 14 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 29 09:31 EDT 2021. Contains 346344 sequences. (Running on oeis4.)