login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279186
Maximal entry in n-th row of A279185.
8
1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 2, 1, 1, 1, 2, 6, 1, 2, 4, 10, 1, 4, 2, 6, 2, 3, 1, 4, 1, 4, 1, 2, 2, 6, 6, 2, 1, 4, 2, 6, 4, 2, 10, 11, 1, 6, 4, 1, 2, 12, 6, 4, 2, 6, 3, 28, 1, 4, 4, 2, 1, 2, 4, 10, 1, 10, 2, 12, 2, 6, 6, 4, 6, 4, 2, 12, 1, 18, 4, 20, 2, 1, 6, 3, 4
OFFSET
1,7
COMMENTS
See A256608 for LCM of entries in row n.
From Robert Israel, Dec 15 2016: (Start)
If m and k are coprime then a(m*k) = lcm(a(m), a(k)).
If n is in A061345 and r = A053575(n) is in A167791, then a(n) = A000010(r). (End)
LINKS
FORMULA
a(n) = A007733(A002322(n)). - Max Alekseyev, Feb 02 2024
MAPLE
A279186 := proc(n)
local a, k ;
a := 1 ;
for k from 0 to n-1 do
a := max(a, A279185(k, n)) ;
end do:
a ;
end proc : # R. J. Mathar, Dec 15 2016
MATHEMATICA
T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]];
a[n_] := Table[T[n, k], {k, 0, n - 1}] // Max;
Array[a, 90] (* Jean-François Alcover, Nov 27 2017, after Robert Israel *)
PROG
(PARI) { A279186(n) = my(r=lcm(znstar(n)[2])); znorder(Mod(2, r>>valuation(r, 2))); } \\ Max Alekseyev, Feb 02 2024
CROSSREFS
Start is same as A256607 and A256608. However, all three are different.
Sequence in context: A280726 A256607 A256608 * A164799 A274451 A193787
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 14 2016
STATUS
approved