

A256608


Least common eventual period of a^(2^k) mod n for all a.


5



1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 2, 1, 1, 1, 2, 6, 1, 2, 4, 10, 1, 4, 2, 6, 2, 3, 1, 4, 1, 4, 1, 2, 2, 6, 6, 2, 1, 4, 2, 6, 4, 2, 10, 11, 1, 6, 4, 1, 2, 12, 6, 4, 2, 6, 3, 28, 1, 4, 4, 2, 1, 2, 4, 10, 1, 10, 2, 12, 2, 6, 6, 4, 6, 4, 2, 12, 1, 18, 4, 20, 2, 1, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,7


COMMENTS

a(n) is a divisor of phi(phi(n)) (A010554).


LINKS

Ivan Neretin, Table of n, a(n) for n = 1..10000
Haifeng Xu, The largest cycles consist by the quadratic residues and Fermat primes, arXiv:1601.06509 [math.NT], 2016.


FORMULA

a(n) = A007733(A002322(n)).
a(prime(n)) = A037178(n).  Michel Marcus, Jan 27 2016


EXAMPLE

In other words, eventual period of {0..n1} under the map x > x^2 mod n.
For example, with n=10 the said map acts as follows. Read down the columns: the column headed 2 for example means that (repeatedly squaring mod 10), 2 goes to 4 goes to 16 = 6 (mod 10) goes to 36 = 6 mod 10  and has reached a fixed point.
0 1 2 3 4 5 6 7 8 9
0 1 4 9 6 5 6 9 4 1
0 1 6 1 6 5 6 1 6 1
0 1 6 1 6 5 6 1 6 1
and thus every number reaches a fixed point. This means the eventual common period is 1, hence a(10)=1.


MATHEMATICA

a[n_] := With[{lambda = CarmichaelLambda[n]}, MultiplicativeOrder[2, lambda / (2^IntegerExponent[lambda, 2])]]; Table[a[n], {n, 1, 100}] (* JeanFrançois Alcover, Jan 28 2016 *)


PROG

(PARI) rpsi(n) = lcm(znstar(n)[2]); \\ A002322
pb(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ A007733
a(n) = pb(rpsi(n)); \\ Michel Marcus, Jan 28 2016


CROSSREFS

Cf. A001146, A002322, A002326, A007733, A010554, A037178.
First differs from A256607 at n=43.
LCM of entries in row n of A279185.
Sequence in context: A333570 A280726 A256607 * A279186 A164799 A274451
Adjacent sequences: A256605 A256606 A256607 * A256609 A256610 A256611


KEYWORD

nonn


AUTHOR

Ivan Neretin, Apr 04 2015


STATUS

approved



