The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279188 Maximal entry in row c of triangle in A279185, where c = prime(n)^2 = A001248(n). 4
 1, 2, 4, 6, 20, 12, 8, 18, 110, 84, 20, 36, 20, 42, 253, 156, 812, 60, 330, 420, 18, 156, 820, 110, 48, 100, 408, 2756, 36, 84, 42, 780, 136, 1518, 1332, 60, 156, 162, 6806, 1204, 1958, 180, 3420, 96, 588, 990, 420, 1332, 3164, 684, 812, 2856, 24, 100 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Needs to be checked (there are really two sequences that should be included: the maximal entry in row c, and the LCM of the entries in row c). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Haifeng Xu, The largest cycles consist by the quadratic residues and Fermat primes, arXiv:1601.06509 [math.NT], 2016. MAPLE A279188 := proc(n)     A279186(ithprime(n)^2) ; end proc : seq(A279188(n), n=1..80) ; # R. J. Mathar, Dec 15 2016 MATHEMATICA T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]]; a[n_] := a[n] = With[{c = Prime[n]^2}, Table[T[c, k], {k, 0, c-1}] // Max]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 54}] (* Jean-François Alcover, Nov 27 2017, after Robert Israel *) CROSSREFS Cf. A001248, A279185. Sequence in context: A005227 A185185 A234019 * A108439 A245766 A193774 Adjacent sequences:  A279185 A279186 A279187 * A279189 A279190 A279191 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 29 09:31 EDT 2021. Contains 346344 sequences. (Running on oeis4.)