|
|
A061345
|
|
Odd prime powers.
|
|
42
|
|
|
1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
select(t -> nops(ifactors(t)[2])<=1, [seq(2*i+1, i=0..1000)]); # Robert Israel, Jun 11 2014
# alternative:
option remember;
local k ;
if n = 0 then
1;
else
for k from procname(n-1)+2 by 2 do
if nops(numtheory[factorset](k)) = 1 then
return k ;
end if;
end do:
end if;
isOddPrimepower := n -> type(n, 'primepower') and not type(n, 'even'):
A061345List := up_to -> select(isOddPrimepower, [`$`(1..up_to)]):
|
|
MATHEMATICA
|
t={1}; k=0; Do[If[k==1, AppendTo[t, a1]]; k=0; Do[c=Sqrt[a^2+b^2]; If[IntegerQ[c]&&GCD[a, b, c]==1, k++; a1=a; b1=b; c1=c; ], {b, 4, a^2/2, 2}], {a, 3, 260, 2}]; t (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
|
|
PROG
|
(Magma) [1] cat [n: n in [3..300 by 2] | IsPrimePower(n)]; // Bruno Berselli, Feb 25 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Larry Reeves (larryr(AT)acm.org), Jun 12 2001
|
|
STATUS
|
approved
|
|
|
|