The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061348 Consider a (solid) triangle with n cells on each edge, for a total of n(n+1)/2 cells; a(n) is number of inequivalent ways of labeling cells with 0's and 1's; triangle may be rotated and turned over. 2
 2, 4, 20, 208, 5728, 351616, 44772352, 11453771776, 5864078802944, 6004800040206336, 12297829416834170880, 50371909152808594571264, 412646679762074900658913280, 6760803201217259503457555972096, 221537999297485988040673580072042496 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS FORMULA See Maple code for formula. EXAMPLE a(2) = 4, the labelings being {000}, {001}, 011}, {111}. Some of the 20 solutions for n=3 are as follows: ..0......1.......0......1.......1.......1.......0 .0.0....0.0.....1.0....1.0.....0.0.....0.0.....1.1 0.0.0..0.0.0...0.0.0..0.0.0...1.0.0...0.1.0...0.0.0 The first solution for n = 4 is ...0 ..0.0 .0.0.0 0.0.0.0 MAPLE A061348 := proc(n) local t1, v, a; a := n*(n+1)/2; v := floor((n+1)/2); if n mod 3 = 1 then t1 := n*(n+1)/6+2/3; else t1 := n*(n+1)/6; fi; (1/6)*(2^a + 2*2^t1+3*2^(a/2+v/2)); end; # from Burnside's Lemma MATHEMATICA A061348[n_] := Module[{t1, v, a}, a = n*(n+1)/2; v = Floor[(n+1)/2]; If[Mod[n, 3] == 1, t1 = n*(n+1)/6+2/3, t1 = n*(n+1)/6]; (1/6)*(2^a+2*2^t1+3*2^(a/2+v/2))]; Table[A061348[n], {n, 1, 15}] (* Jean-François Alcover, Feb 03 2014, after Maple *) CROSSREFS Cf. A061709. Sequence in context: A052573 A110371 A120388 * A127103 A059831 A064493 Adjacent sequences:  A061345 A061346 A061347 * A061349 A061350 A061351 KEYWORD nonn,easy,nice AUTHOR Michel ten Voorde, Jun 08 2001 EXTENSIONS Formula and more terms from N. J. A. Sloane, Jun 20 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 04:42 EDT 2021. Contains 346348 sequences. (Running on oeis4.)