login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279184
Numbers k such that phi(6k) = phi(6k+2), where phi is Euler's totient function A000010.
3
268, 723, 9718, 9858, 13498, 15738, 35898, 60363, 75168, 75973, 87208, 88888, 98198, 126848, 135368, 141093, 161268, 221223, 233788, 301513, 328358, 330633, 419148, 507648, 527928, 543468, 551238, 556418, 586018, 725958, 772508, 964588, 985728
OFFSET
1,1
LINKS
Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 67.
MAPLE
select( k -> numtheory:-phi(6*k)=numtheory:-phi(6*k+2), [$1..10^6]); # Robert Israel, Dec 11 2016
MATHEMATICA
a = {}; Do[If[EulerPhi[6 k] == EulerPhi[6 k + 2], AppendTo[a, k]], {k, 1000000}]; a (* Vincenzo Librandi, Dec 11 2016 *)
PROG
(Magma) [n: n in [1..2*10^6] | EulerPhi(6*n) eq EulerPhi(6*n+2)]; // Vincenzo Librandi, Dec 11 2016
(PARI) isok(k) = eulerphi(6*k) == eulerphi(6*k+2); \\ Michel Marcus, Dec 11 2016
CROSSREFS
Cf. A000010.
A279011 is the union of A279183 and A279184.
Sequence in context: A304388 A234878 A194774 * A237228 A190352 A235175
KEYWORD
nonn,changed
AUTHOR
N. J. A. Sloane, Dec 10 2016
EXTENSIONS
a(8)-a(33) from Robert Israel, Dec 11 2016
STATUS
approved