login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that phi(6k) = phi(6k+2), where phi is Euler's totient function A000010.
3

%I #25 Dec 15 2024 04:38:14

%S 268,723,9718,9858,13498,15738,35898,60363,75168,75973,87208,88888,

%T 98198,126848,135368,141093,161268,221223,233788,301513,328358,330633,

%U 419148,507648,527928,543468,551238,556418,586018,725958,772508,964588,985728

%N Numbers k such that phi(6k) = phi(6k+2), where phi is Euler's totient function A000010.

%H Amiram Eldar, <a href="/A279184/b279184.txt">Table of n, a(n) for n = 1..794</a>

%H Dov Jarden, <a href="/A001602/a001602.pdf">Recurring Sequences</a>, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 67.

%p select( k -> numtheory:-phi(6*k)=numtheory:-phi(6*k+2), [$1..10^6]); # _Robert Israel_, Dec 11 2016

%t a = {}; Do[If[EulerPhi[6 k] == EulerPhi[6 k + 2], AppendTo[a, k]], {k, 1000000}]; a (* _Vincenzo Librandi_, Dec 11 2016 *)

%o (Magma) [n: n in [1..2*10^6] | EulerPhi(6*n) eq EulerPhi(6*n+2)]; // _Vincenzo Librandi_, Dec 11 2016

%o (PARI) isok(k) = eulerphi(6*k) == eulerphi(6*k+2); \\ _Michel Marcus_, Dec 11 2016

%Y Cf. A000010.

%Y A279011 is the union of A279183 and A279184.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Dec 10 2016

%E a(8)-a(33) from _Robert Israel_, Dec 11 2016