OFFSET
0,25
LINKS
FORMULA
a(n) = [x^n y^9] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/6)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(l) * A010052(m) * A010052(o) * A010052(p) * A010052(q) * A010052(n-i-j-k-l-m-o-p-q). - Wesley Ivan Hurt, Apr 19 2019
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(i^2>n, 0, b(n-i^2, i, t-1))))
end:
a:= n-> b(n, isqrt(n), 9):
seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
MATHEMATICA
a[n_] := Count[ PowersRepresentations[n, 9, 2], pr_List /; FreeQ[pr, 0]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 27 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved