login
A025433
Number of partitions of n into 9 nonzero squares.
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 2, 4, 1, 2, 4, 2, 4, 4, 2, 4, 4, 2, 5, 6, 3, 5, 5, 4, 5, 5, 5, 6, 9, 5, 6, 9, 4, 7, 10, 5, 10, 9, 6, 11, 9, 6, 11, 13, 9, 11, 12, 9, 11, 13, 11, 14, 16, 11, 14, 16, 10, 13, 20, 13, 18, 19, 12, 20, 18, 13
OFFSET
0,25
FORMULA
a(n) = [x^n y^9] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/6)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(l) * A010052(m) * A010052(o) * A010052(p) * A010052(q) * A010052(n-i-j-k-l-m-o-p-q). - Wesley Ivan Hurt, Apr 19 2019
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(i^2>n, 0, b(n-i^2, i, t-1))))
end:
a:= n-> b(n, isqrt(n), 9):
seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
MATHEMATICA
a[n_] := Count[ PowersRepresentations[n, 9, 2], pr_List /; FreeQ[pr, 0]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 27 2012 *)
CROSSREFS
Column k=9 of A243148.
Sequence in context: A029325 A276417 A025432 * A025434 A111178 A279187
KEYWORD
nonn
STATUS
approved