login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025430
Number of partitions of n into 6 nonzero squares.
19
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 4, 1, 3, 3, 1, 4, 2, 1, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 6, 3, 4, 6, 2, 3, 7, 3, 6, 5, 2, 7, 5, 3, 7, 7, 5, 6, 6, 5, 5, 6, 6, 7, 9, 5, 6, 10, 4, 6, 11, 5, 10, 8, 6, 11, 7, 5, 11, 10, 8, 10, 8, 8, 8, 9, 10, 11, 13
OFFSET
0,22
FORMULA
a(n) = [x^n y^6] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_(i=j..floor((n-j-k-l-m)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(l) * A010052(m) * A010052(n-i-j-k-l-m). - Wesley Ivan Hurt, Apr 19 2019
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(i^2>n, 0, b(n-i^2, i, t-1))))
end:
a:= n-> b(n, isqrt(n), 6):
seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
MATHEMATICA
a[n_] := Count[PowersRepresentations[n, 6, 2], r_ /; FreeQ[r, 0]]; Array[a, 120, 0] (* Jean-François Alcover, Feb 19 2016 *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^2 > n, 0, b[n - i^2, i, t - 1]]]];
a[n_] := b[n, Sqrt[n] // Floor, 6];
a /@ Range[0, 120] (* Jean-François Alcover, Nov 06 2020, after Alois P. Heinz *)
CROSSREFS
Column k=6 of A243148.
Sequence in context: A354579 A306261 A329722 * A256972 A365708 A352999
KEYWORD
nonn,easy
STATUS
approved