login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025444 Number of partitions of n into 5 distinct nonzero squares. 2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,104

LINKS

Table of n, a(n) for n=0..107.

Index entries for sequences related to sums of squares

FORMULA

a(n) = [x^n y^5] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019

MAPLE

From R. J. Mathar, Oct 18 2010: (Start)

A025444aux := proc(n, m, nmax) local a, m, upn, lv ; if m = 1 then if issqr(n) and nmax^2 >= n and n >= 1 then return 1; else return 0; end if; else a := 0 ; for upn from 1 to nmax do lv := n-upn^2 ; if lv <0 then break; end if; a := a + procname(lv, m-1, upn-1) ; end do: return a; end if; end proc:

A025444 := proc(n) A025444aux(n, 5, n) ; end proc: (End)

CROSSREFS

Sequence in context: A086260 A124505 A326855 * A212619 A309162 A092575

Adjacent sequences:  A025441 A025442 A025443 * A025445 A025446 A025447

KEYWORD

nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 10:45 EST 2019. Contains 329751 sequences. (Running on oeis4.)