The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285034 1-limiting word of the morphism 0->10, 1-> 001. 4
 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS The morphism 0->10, 1->001 has two limiting words. If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 00110 -> 101000100110 -> 00110001101010001101000100110; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 00110 -> 101000100110, as in A285034. LINKS Clark Kimberling, Table of n, a(n) for n = 1..10000 MATHEMATICA s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 0, 1}}] &, {0}, 9]; (* A285034 *) Flatten[Position[s, 0]]; (* A285035 *) Flatten[Position[s, 1]]; (* A285036 *) SubstitutionSystem[{0->{1, 0}, 1->{0, 0, 1}}, {1, 0}, {6}][[1]] (* Harvey P. Dale, Apr 06 2022 *) CROSSREFS Cf. A285032, A285035, A285036. Sequence in context: A108340 A341040 A257585 * A266174 A088917 A014933 Adjacent sequences: A285031 A285032 A285033 * A285035 A285036 A285037 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 07:48 EST 2023. Contains 367468 sequences. (Running on oeis4.)