login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285034 1-limiting word of the morphism 0->10, 1-> 001. 4
1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

The morphism 0->10, 1->001 has two limiting words.  If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 00110 -> 101000100110 -> 00110001101010001101000100110; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 00110 -> 101000100110, as in A285034.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 0, 1}}] &, {0}, 9]; (* A285034 *)

Flatten[Position[s, 0]]; (* A285035  *)

Flatten[Position[s, 1]];  (* A285036 *)

CROSSREFS

Cf. A285032, A285035, A285036.

Sequence in context: A267423 A108340 A257585 * A266174 A088917 A014933

Adjacent sequences:  A285031 A285032 A285033 * A285035 A285036 A285037

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 19 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 16:36 EST 2020. Contains 332080 sequences. (Running on oeis4.)