|
|
A063196
|
|
Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 7 ).
|
|
5
|
|
|
0, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 33, 33, 35, 35, 37, 37, 39, 39, 41, 41, 43, 43, 45, 45, 47, 47, 49, 49, 51, 51, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 63, 63, 65, 65, 67, 67, 69, 69, 71, 71, 73, 73, 75, 75, 77, 77, 79, 79, 81, 81, 83
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Also, for n>1, number of involutions (i.e. elements of order 2) in the dihedral group D_(n-1). - Lekraj Beedassy, Oct 22 2004
Also, the chromatic number of the n-th triangular graph; i.e., the chromatic index (edge chromatic number) of the n-th complete graph. - Danny Rorabaugh, Nov 26 2018
|
|
LINKS
|
|
|
FORMULA
|
For n > 1, a(n-1) = (2n + 1 + (-1)^n)/2 (odd numbers appearing twice). - Lekraj Beedassy, Oct 22 2004
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 4.
G.f.: -x^2*(x^2-2*x-1) / ((x-1)^2*(x+1)). (End)
|
|
MATHEMATICA
|
CoefficientList[Series[-x (x^2 - 2 x - 1) / ((x - 1)^2 (x + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 27 2018 *)
LinearRecurrence[{1, 1, -1}, {0, 1, 3, 3}, 90] (* Harvey P. Dale, Sep 11 2024 *)
|
|
PROG
|
(PARI) concat([0], Vec(-x^2*(x^2-2*x-1)/((x-1)^2*(x+1)) + O(x^100))) \\ Colin Barker, Sep 08 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|