Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Apr 17 2019 09:54:37
%S 1,2,3,4,7,10,15,20,27,34,43,52,63,74,87,100,115,130,147,164,183,202,
%T 223,244,267,290,315,340,367,394,423,452,483,514,547,580,615,650,687,
%U 724,763,802,843,884,927,970,1015,1060,1107,1154,1203,1252,1303,1354
%N Total number of ON (black) cells after n iterations of the "Rule 133" elementary cellular automaton starting with a single ON (black) cell.
%C Identical to A105343(n-1) for n > 1. - _Guenther Schrack_, Jun 01 2018
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Robert Price, <a href="/A267459/b267459.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, Jan 16 2016 and Apr 17 2019: (Start)
%F a(n) = (2*n^2 - 4*n + (-1)^n + 11)/4 for n > 0.
%F a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 4.
%F G.f.: (1-x^2+2*x^4) / ((1-x)^3*(1+x)).
%F (End)
%t rule=133; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)
%Y Cf. A267423.
%K nonn,easy
%O 0,2
%A _Robert Price_, Jan 15 2016