OFFSET
0,2
LINKS
Georg Fischer, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = A145466(5*n).
Expansion of G(x)^2 in powers of x where G() is a Rogers-Ramanujan function.
a(n) ~ exp(2*Pi*sqrt(2*n/15)) * phi / (3^(1/4) * 10^(3/4) * n^(3/4)) * (1 - (3*sqrt(15/2)/(16*Pi) + Pi/(15*sqrt(30)))/sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 14 2018
Euler transform of the period 5 sequence [2, 0, 0, 2, 0, ...]. - Georg Fischer, Aug 19 2020
EXAMPLE
1/q + 2*q^29 + 3*q^59 + 4*q^89 + 7*q^119 + 10*q^149 + 15*q^179 + ...
MAPLE
# Using the function EULER from Transforms (see link at the bottom of the page).
[1, op(EULER([seq(op([2, 0, 0, 2, 0]), n=1..9)]))]; # Peter Luschny, Aug 19 2020
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*add(`if`(irem(d, 5) in {1, 4}, 2*d, 0),
d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, Aug 19 2020
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/((1 - x^(5*k - 1))*(1 - x^(5*k - 4)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 14 2018 *)
PROG
(PARI) {a(n) = local(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1)^2, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 11 2008
STATUS
approved