login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145467
Convolution square of A003114.
2
1, 2, 3, 4, 7, 10, 15, 20, 28, 38, 52, 68, 91, 118, 153, 196, 252, 318, 403, 504, 632, 784, 973, 1196, 1473, 1800, 2198, 2668, 3238, 3908, 4714, 5660, 6789, 8112, 9683, 11516, 13685, 16210, 19178, 22628, 26671, 31354, 36821, 43140, 50489, 58968, 68796
OFFSET
0,2
LINKS
FORMULA
a(n) = A145466(5*n).
Expansion of G(x)^2 in powers of x where G() is a Rogers-Ramanujan function.
a(n) ~ exp(2*Pi*sqrt(2*n/15)) * phi / (3^(1/4) * 10^(3/4) * n^(3/4)) * (1 - (3*sqrt(15/2)/(16*Pi) + Pi/(15*sqrt(30)))/sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 14 2018
Euler transform of the period 5 sequence [2, 0, 0, 2, 0, ...]. - Georg Fischer, Aug 19 2020
EXAMPLE
1/q + 2*q^29 + 3*q^59 + 4*q^89 + 7*q^119 + 10*q^149 + 15*q^179 + ...
MAPLE
# Using the function EULER from Transforms (see link at the bottom of the page).
[1, op(EULER([seq(op([2, 0, 0, 2, 0]), n=1..9)]))]; # Peter Luschny, Aug 19 2020
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*add(`if`(irem(d, 5) in {1, 4}, 2*d, 0),
d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, Aug 19 2020
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/((1 - x^(5*k - 1))*(1 - x^(5*k - 4)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 14 2018 *)
PROG
(PARI) {a(n) = local(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1)^2, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 11 2008
STATUS
approved