login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277000
Numerators of an asymptotic series for the Gamma function (even power series).
5
1, -1, 19, -2561, 874831, -319094777, 47095708213409, -751163826506551, 281559662236405100437, -49061598325832137241324057, 5012066724315488368700829665081, -26602063280041700132088988446735433, 40762630349420684160007591156102493590477
OFFSET
0,3
COMMENTS
Let y = x+1/2 then Gamma(x+1) ~ sqrt(2*Pi)*((y/E)*Sum_{k>=0} r(k)/y^(2*k))^y as x -> oo and r(k) = A277000(k)/A277001(k) (see example 6.1 in the Wang reference).
FORMULA
a(n) = numerator(b(2*n)) with b(n) = Y_{n}(0, z_2, z_3,..., z_n)/n! with z_k = k!*Bernoulli(k,1/2)/(k*(k-1)) and Y_{n} the complete Bell polynomials.
The rational numbers have the recurrence r(n) = (1/(2*n))*Sum_{m=0..n-1} Bernoulli(2*m+2,1/2)*r(n-m-1)/(2*m+1)) for n>=1, r(0)=1. - Peter Luschny, Sep 30 2016
EXAMPLE
The underlying rational sequence starts:
1, 0, -1/24, 0, 19/5760, 0, -2561/2903040, 0, 874831/1393459200, 0, ...
MAPLE
b := n -> CompleteBellB(n, 0, seq((k-2)!*bernoulli(k, 1/2), k=2..n))/n!:
A277000 := n -> numer(b(2*n)): seq(A277000(n), n=0..12);
# Alternatively the rational sequence by recurrence:
R := proc(n) option remember; local k; `if`(n=0, 1,
add(bernoulli(2*m+2, 1/2)* R(n-m-1)/(2*m+1), m=0..n-1)/(2*n)) end:
seq(numer(R(n)), n=0..12); # Peter Luschny, Sep 30 2016
MATHEMATICA
CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
b[n_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, 1/2], {k, 2, n}]]]/n!;
a[n_] := Numerator[b[2n]];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Sep 09 2018 *)
CROSSREFS
Cf. A001163/A001164 (Stirling), A182935/A144618 (De Moivre), A005146/A005147 (Stieltjes), A090674/A090675 (Lanczos), A181855/A181856 (Nemes), A182912/A182913 (NemesG), A182916/A182917 (Wehmeier), A182919/A182920 (Gosper), A182914/A182915, A277002/A277003 (odd power series).
Cf. A276667/A276668 (the arguments of the Bell polynomials).
Sequence in context: A364851 A172651 A183739 * A055415 A196541 A221296
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Sep 25 2016
STATUS
approved