login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090675
Denominators of rational coefficients in a series expansion of z! = Gamma(z+1), convergent for Re(z) >= 0, given as equation (21) in the referenced paper by Lanczos.
3
24, 1152, 414720, 39813120, 1337720832, 4815794995200, 115579079884800, 22191183337881600, 263631258054033408000, 88580102706155225088000, 27636992044320430227456000, 39797268543821419527536640000
OFFSET
1,1
COMMENTS
It would be nice to have a way to generate the sequence which is simpler than that used in the program provided.
It seems that for n>0 A090675(n) = A144618(n) with the exception 5*A090675(5) = A144618(5). - Peter Luschny, Mar 01 2011
REFERENCES
C. Lanczos, A precision approximation of the gamma function, J. SIAM Numer. Anal., Ser. B, 1 (1964), 86-96
MAPLE
Lanczos := proc(n)
exp(1+LambertW((x^2-1)/exp(1)));
coeftayl(taylor(%, x=0, 2*n+2), x=0, 2*n+1);
simplify(-%*(2*n+1)*pochhammer(1/2, n)/sqrt(2), exp) end:
A090674 := n -> numer(Lanczos(n));
A090675 := n -> denom(Lanczos(n)); # Peter Luschny, Mar 01 2011
MATHEMATICA
(* Gamma[z+1] == Sqrt[2*Pi]*((z + 1/2)/E)^(z + 1/2)*(1 - Sum[a[[n]]/Pochhammer[z + 1, n], {n, 1, Infinity}] *) n = 30 (* which must be even *); e[0] = 1; e[1] = Sqrt[2]; f[x_] := SeriesData[x, 0, Table[e[i], {i, 0, n}], 0, n + 1, 1]; d = First[Table[e[i], {i, 0, n - 1}] /. Solve[CoefficientList[Normal[(1/2)*D[f[x]^2, x] - (1 - x^2)*D[f[x], x] - 2*x*f[x]], x] == 0, Table[e[i], {i, 2, n}]]]; c = Table[Sqrt[2]*(i - 1)*d[[i]]*Sin[theta]^(i - 2), {i, 2, n, 2}]; b = Table[Integrate[Cos[theta]^(2*x)*c[[i]], {theta, -(Pi/2), Pi/2}, Assumptions -> x > -(1/2)], {i, 1, n/2}]; a = Table[ -((b[[i]]*Gamma[i + x])/(2*Sqrt[Pi]*Gamma[1/2 + x])), {i, 2, n/2}]; Denominator[a]
nmax = 10; f[x_] := Exp[1 + ProductLog[(x^2 - 1)/E]]; se = Series[f[x], {x, 0, 2 nmax + 2}] /. Arg[x] -> 0; Lanczos[n_] := ( coe = SeriesCoefficient[ se, {x, 0, 2 n + 1}]; Simplify[ -coe*(2*n + 1)*Pochhammer[1/2, n]/Sqrt[2]]); a[n_] := a[n] = Denominator[ Lanczos[n] ]; A090675 = Table[ Print[a[n]]; a[n], {n, 1, nmax}] (* Jean-François Alcover, Dec 07 2011, after Peter Luschny *)
CROSSREFS
Numerators are in A090674.
Sequence in context: A080775 A191744 A323994 * A144618 A042107 A042104
KEYWORD
frac,nonn
AUTHOR
David W. Cantrell (DWCantrell(AT)sigmaxi.net), Dec 18 2003
STATUS
approved