The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090674 Numerators of rational coefficients in a series expansion of z! = Gamma(z+1), convergent for Re(z) >= 0, given as equation (21) in the referenced paper by Lanczos. 3
 1, 23, 11237, 2482411, 272785979, 4175309343349, 525035501918789, 628141988536245979, 53917386529177385523923, 148934765720971351352763767, 428338546734334777277256756263, 6301150244751080741665843707891149, 1695881990125518108674571524660426383 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS It would be nice to have a way to generate the sequence which is simpler than that used in the [first Mathematica] program provided. This sequence is also related to the orbifold Euler characteristic of the non-connected graph-complex for the cyclic operad Lie, see the articles by Gerlits and by Smillie-Vogtmann (in which only the logarithm of the generating function does appear). - F. Chapoton, Feb 12 2013 LINKS M. Borinsky and K. Vogtmann, The Euler characteristic of Out(Fn), arXiv:1907.03543 [math.GR], 2019-2020; Comment. Math. Helvetici, 95 (2020), 703-748. F. Gerlits, The Euler characteristic of graph complexes via Feynman diagrams, arXiv:math/0412094 [math.QA], 2004-2007. C. Lanczos, A precision approximation of the Gamma Function, SIAM J. Num. Anal. B1 (1964) 86-96. J. Smillie and K. Vogtmann, A generating function for the Euler characteristic of Out(F_n), in: Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985). J. Pure Appl. Algebra, 44(1-3):329-348, 1987. W. Wang, Unified approaches to the approximations of the gamma function, J. Number Theory, Volume 163, June 2016, pp. 570-595. MAPLE A090674 := proc(n) local e, y, t ; e := exp(1) ; y := (x^2-1)/e ; y := e*exp(LambertW(y)) ; taylor(y, x=0, 2*n+2) ; simplify(coeftayl(%, x=0, 2*n+1), exp) ; %*doublefactorial(2*n+1)/2^n/sqrt(2) ; abs(numer(%)) ; end: seq( A090674(n), n=1..14) ; # R. J. Mathar, Aug 28 2009 MATHEMATICA (* Gamma[z+1] == Sqrt[2*Pi]*((z + 1/2)/E)^(z + 1/2)*(1 - Sum[a[[n]]/Pochhammer[z + 1, n], {n, 1, Infinity}] *) n = 30 (* which must be even *); e = 1; e = Sqrt; f[x_] := SeriesData[x, 0, Table[e[i], {i, 0, n}], 0, n + 1, 1]; d = First[Table[e[i], {i, 0, n - 1}] /. Solve[CoefficientList[Normal[(1/2)*D[f[x]^2, x] - (1 - x^2)*D[f[x], x] - 2*x*f[x]], x] == 0, Table[e[i], {i, 2, n}]]]; c = Table[Sqrt*(i - 1)*d[[i]]*Sin[theta]^(i - 2), {i, 2, n, 2}]; b = Table[Integrate[Cos[theta]^(2*x)*c[[i]], {theta, -(Pi/2), Pi/2}, Assumptions -> x > -(1/2)], {i, 1, n/2}]; a = Table[ -((b[[i]]*Gamma[i + x])/(2*Sqrt[Pi]*Gamma[1/2 + x])), {i, 2, n/2}]; Numerator[a] (* Cantrell *) nmax = 10; f[x_] := Exp[1 + ProductLog[(x^2 - 1)/E]]; se = Series[f[x], {x, 0, 2 nmax + 2}] /. Arg[x] -> 0; Lanczos[n_] := ( coe = SeriesCoefficient[se, {x, 0, 2 n + 1}]; Simplify[-coe*(2*n + 1)*Pochhammer[1/2, n]/Sqrt]); a[n_] := a[n] = Numerator[Lanczos[n]]; A090674 = Table[ Print[a[n]]; a[n], {n, 1, nmax}] (* Jean-François Alcover, Dec 07 2011, after Peter Luschny *) CROSSREFS Denominators are in A090675. Sequence in context: A233109 A193430 A233213 * A013728 A028693 A324255 Adjacent sequences:  A090671 A090672 A090673 * A090675 A090676 A090677 KEYWORD frac,nonn AUTHOR David W. Cantrell (DWCantrell(AT)sigmaxi.net), Dec 18 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 29 14:59 EDT 2021. Contains 346346 sequences. (Running on oeis4.)