login
A368145
Number of ways of tiling the n X n torus up to 90-degree rotations of the square by an asymmetric tile.
3
1, 23, 7296, 67124336, 11258999068672, 32794211700912314368, 1616901275801313012113145856, 1329227995784915876578744357489750016, 18043230090504974298810923860695296894480941056, 4017345110647475688854905231100098373350012499289786810368
OFFSET
1,2
COMMENTS
M.C. Escher enumerated a(2) = 23 by hand in May 1942, being perhaps the first person to attempt this sort of counting problem. (See Doris Schattschneider's book in the references for more details.)
REFERENCES
Doris Schattschneider, Visions of Symmetry, W.H. Freeman, 1990, pages 44-48.
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-25.
Doris Schattschneider, Escher's combinatorial patterns, Electron. J. Combin. 4(2) (1996), #R17.
MATHEMATICA
A368145[n_] := 1/(4n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] + n^2*If[OddQ[n], 0, 3/4*2^n^2 + 2^(n^2/2)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Dec 16 2023
STATUS
approved