login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A368138 The number of ways of tiling the n X n torus up to the symmetries of the square by an asymmetric tile. 4
1, 154, 1864192, 2199026796168, 188894659314785812480, 1126800533536206914843196839296, 455117248949604553908892209645884928950272, 12259964326927110866866776228808161337250421224373748224, 21812926725659065797324660502998994022561529591086874194578215566049280 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
Dan Davis, On a Tiling Scheme from M. C. Escher, Electron. J. Combin. 4(2) (1996), #R23.
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
MATHEMATICA
A368138[n_] := 1/(8n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 8^(n^2/LCM[c, d])]]]] + If[EvenQ[n], n^2 (3/4*8^(n^2/2) + 8^(n^2/4)) + n*DivisorSum[n, Function[c, EulerPhi[c] (If[EvenQ[c], 2*8^(n^2/c), 8^(n^2/(2 c))])]], 0] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*If[EvenQ[d], 8^(n^2/(2 d)), 0]]])
CROSSREFS
Sequence in context: A227977 A282557 A200709 * A248657 A159258 A214472
KEYWORD
nonn
AUTHOR
Peter Kagey, Dec 16 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 18:50 EDT 2024. Contains 373707 sequences. (Running on oeis4.)