OFFSET
1,2
COMMENTS
Let y = x+1/2 then Gamma(x+1) ~ sqrt(2*Pi)*(y/E)^y*exp(Sum_{k>=1} r(k)/y^(2*k-1)) as x -> oo and r(k) = A277002(k)/A277003(k) (see example 7.1 in the Wang reference).
See also theorem 2 and formula (58) in Borwein and Corless. - Peter Luschny, Mar 31 2017
LINKS
J. M. Borwein, R. M. Corless, Gamma and Factorial in the Monthly, arXiv:1703.05349 [math.HO], 2017.
Peter Luschny, Approximations to the factorial function.
W. Wang, Unified approaches to the approximations of the gamma function, J. Number Theory (2016).
FORMULA
a(n) = numerator(b(2*n-1)) with b(n) = Bernoulli(n+1, 1/2)/(n*(n+1)) for n>=1, b(0)=0.
EXAMPLE
The underlying rational sequence b(n) starts:
0, -1/24, 0, 7/2880, 0, -31/40320, 0, 127/215040, 0, -511/608256, ...
MAPLE
b := n -> `if`(n=0, 0, bernoulli(n+1, 1/2)/(n*(n+1))):
a := n -> numer(b(2*n-1)):
seq(a(n), n=1..18);
MATHEMATICA
b[n_] := BernoulliB[n+1, 1/2]/(n(n+1));
a[n_] := Numerator[b[2n-1]];
Array[a, 18] (* Jean-François Alcover, Sep 09 2018 *)
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Sep 26 2016
STATUS
approved