OFFSET
0,5
COMMENTS
REFERENCES
G. Nemes, More Accurate Approximations for the Gamma Function, Thai Journal of Mathematics Volume 9(1) (2011), 21-28.
LINKS
FORMULA
Gamma(x+1) ~ x^x e^(-x) sqrt(2Pi(x+1/6)) Sum_{n>=0} G_n / (x+1/4)^n.
EXAMPLE
G_0 = 1, G_1 = 0, G_2 = 1/144, G_3 = -1/12960.
MAPLE
G := proc(n) option remember; local j, J;
J := proc(k) option remember; local j; `if`(k=0, 1,
(J(k-1)/k-add((J(k-j)*J(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
add(J(2*j)*2^j*6^(j-n)*GAMMA(1/2+j)/(GAMMA(n-j+1)*GAMMA(1/2+j-n)), j=0..n)-add(G(j)*(-4)^(j-n)*(GAMMA(n)/(GAMMA(n-j+1)*GAMMA(j))), j=1..n-1) end:
MATHEMATICA
G[n_] := G[n] = Module[{j, J}, J[k_] := J[k] = Module[{j}, If[k == 0, 1, (J[k-1]/k - Sum[J[k-j]*J[j]/(j+1), {j, 1, k-1}])/(1+1/(k+1))]]; Sum[J[2*j]*2^j*6^(j-n)*Gamma[1/2+j]/(Gamma[n-j+1]*Gamma[1/2+j-n]), {j, 0, n}] - Sum[G[j]*(-4)^(j-n)*Gamma[n]/(Gamma[n-j+1]*Gamma[j]), {j, 1, n-1}]]; A182912[n_] := Numerator[G[n]]; Table[A182912[i], {i, 0, 15}] (* Jean-François Alcover, Jan 06 2014, translated from Maple *)
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Feb 09 2011
STATUS
approved