login
A182912
Numerators of an asymptotic series for the Gamma function (G. Nemes)
3
1, 0, 1, -1, -257, -53, 5741173, 37529, -710165119, -3376971533, 360182239526821, 104939254406053, -508096766056991140541, -70637580369737593, 289375690552473442964467, 796424971106808496421869
OFFSET
0,5
COMMENTS
G_n = A182912(n)/A182913(n). These rational numbers provide the coefficients for an asymptotic expansion of the Gamma function.
REFERENCES
G. Nemes, More Accurate Approximations for the Gamma Function, Thai Journal of Mathematics Volume 9(1) (2011), 21-28.
FORMULA
Gamma(x+1) ~ x^x e^(-x) sqrt(2Pi(x+1/6)) Sum_{n>=0} G_n / (x+1/4)^n.
EXAMPLE
G_0 = 1, G_1 = 0, G_2 = 1/144, G_3 = -1/12960.
MAPLE
G := proc(n) option remember; local j, J;
J := proc(k) option remember; local j; `if`(k=0, 1,
(J(k-1)/k-add((J(k-j)*J(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
add(J(2*j)*2^j*6^(j-n)*GAMMA(1/2+j)/(GAMMA(n-j+1)*GAMMA(1/2+j-n)), j=0..n)-add(G(j)*(-4)^(j-n)*(GAMMA(n)/(GAMMA(n-j+1)*GAMMA(j))), j=1..n-1) end:
A182912 := n -> numer(G(n)); seq(A182912(i), i=0..15);
MATHEMATICA
G[n_] := G[n] = Module[{j, J}, J[k_] := J[k] = Module[{j}, If[k == 0, 1, (J[k-1]/k - Sum[J[k-j]*J[j]/(j+1), {j, 1, k-1}])/(1+1/(k+1))]]; Sum[J[2*j]*2^j*6^(j-n)*Gamma[1/2+j]/(Gamma[n-j+1]*Gamma[1/2+j-n]), {j, 0, n}] - Sum[G[j]*(-4)^(j-n)*Gamma[n]/(Gamma[n-j+1]*Gamma[j]), {j, 1, n-1}]]; A182912[n_] := Numerator[G[n]]; Table[A182912[i], {i, 0, 15}] (* Jean-François Alcover, Jan 06 2014, translated from Maple *)
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Feb 09 2011
STATUS
approved