login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276233
a(n) = (n+256)/gcd(n,256).
2
257, 129, 259, 65, 261, 131, 263, 33, 265, 133, 267, 67, 269, 135, 271, 17, 273, 137, 275, 69, 277, 139, 279, 35, 281, 141, 283, 71, 285, 143, 287, 9, 289, 145, 291, 73, 293, 147, 295, 37, 297, 149, 299, 75, 301, 151, 303, 19, 305, 153
OFFSET
1,1
FORMULA
a(n) = numerator of 1+256/n, which is the limit of the function EllipticTheta(3, 0, q)^8 + EllipticTheta(2, 0, sqrt(q))^8/(n q) when q -> 0.
a(2k-1) = n + 256 = 2k-1 + 256 = 2k + 255
a(4k-2) = n/2 + 128 = 2k-1 + 128 = 2k + 127
a(8k-4) = n/4 + 64 = 2k-1 + 64 = 2k + 63
a(16k-8) = n/8 + 32 = 2k-1 + 32 = 2k + 31
a(32k-16) = n/16 + 16 = 2k-1 + 16 = 2k + 15
a(64k-32) = n/32 + 8 = 2k-1 + 8 = 2k + 7
a(128k-64) = n/64 + 4 = 2k-1 + 4 = 2k + 3
a(256k-128) = n/128 + 2 = 2k-1 + 2 = 2k + 1.
a(n) = 2*a(n-256) - a(n-512) for n > 512. - Ray Chandler, Aug 03 2023
MAPLE
seq((n+256)/igcd(n, 256), n=1..300); # Robert Israel, Aug 25 2016
MATHEMATICA
Numerator[Table[Limit[EllipticTheta[3, 0, b]^8 + EllipticTheta[2, 0, Sqrt[b]]^8/(n b), b -> 0], {n, 1, 50}]]
Table[(n + 256)/GCD[n, 256], {n, 60}] (* Ray Chandler, Aug 03 2023 *)
CROSSREFS
Cf. A276234 (denominators).
Sequence in context: A051333 A273775 A182912 * A252726 A260679 A043676
KEYWORD
nonn
AUTHOR
Artur Jasinski, Aug 24 2016
STATUS
approved