login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n+256)/gcd(n,256).
2

%I #35 Aug 03 2023 15:23:09

%S 257,129,259,65,261,131,263,33,265,133,267,67,269,135,271,17,273,137,

%T 275,69,277,139,279,35,281,141,283,71,285,143,287,9,289,145,291,73,

%U 293,147,295,37,297,149,299,75,301,151,303,19,305,153

%N a(n) = (n+256)/gcd(n,256).

%H Ray Chandler, <a href="/A276233/b276233.txt">Table of n, a(n) for n = 1..1024</a>

%H <a href="/index/Rec#order_512">Index entries for linear recurrences with constant coefficients</a>, order 512.

%F a(n) = numerator of 1+256/n, which is the limit of the function EllipticTheta(3, 0, q)^8 + EllipticTheta(2, 0, sqrt(q))^8/(n q) when q -> 0.

%F a(2k-1) = n + 256 = 2k-1 + 256 = 2k + 255

%F a(4k-2) = n/2 + 128 = 2k-1 + 128 = 2k + 127

%F a(8k-4) = n/4 + 64 = 2k-1 + 64 = 2k + 63

%F a(16k-8) = n/8 + 32 = 2k-1 + 32 = 2k + 31

%F a(32k-16) = n/16 + 16 = 2k-1 + 16 = 2k + 15

%F a(64k-32) = n/32 + 8 = 2k-1 + 8 = 2k + 7

%F a(128k-64) = n/64 + 4 = 2k-1 + 4 = 2k + 3

%F a(256k-128) = n/128 + 2 = 2k-1 + 2 = 2k + 1.

%F a(n) = 2*a(n-256) - a(n-512) for n > 512. - _Ray Chandler_, Aug 03 2023

%p seq((n+256)/igcd(n,256),n=1..300); # _Robert Israel_, Aug 25 2016

%t Numerator[Table[Limit[EllipticTheta[3, 0, b]^8 + EllipticTheta[2, 0,Sqrt[b]]^8/(n b),b -> 0], {n, 1, 50}]]

%t Table[(n + 256)/GCD[n, 256], {n, 60}] (* _Ray Chandler_, Aug 03 2023 *)

%Y Cf. A276234 (denominators).

%K nonn

%O 1,1

%A _Artur Jasinski_, Aug 24 2016