login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182913
Denominators of an asymptotic series for the Gamma function (G. Nemes)
3
1, 1, 144, 12960, 207360, 2612736, 9405849600, 18811699200, 1083553873920, 4022693756928000, 300361133850624000, 210853515963138048000, 151814531493459394560000, 151814531493459394560000, 21861292535058152816640000
OFFSET
0,3
COMMENTS
G_n = A182912(n)/A182913(n). These rational numbers provide the coefficients for an asymptotic expansion of the Gamma function.
REFERENCES
G. Nemes, More Accurate Approximations for the Gamma Function,
Thai Journal of Mathematics Volume 9(1) (2011), 21-28.
FORMULA
Gamma(x+1) ~ x^x e^(-x) sqrt(2Pi (x+1/6)) Sum_{n>=0} G_n / (x+1/4)^n.
EXAMPLE
G_0 = 1, G_1 = 0, G_2 = 1/144, G_3 = -1/12960.
MAPLE
# See A182912 for G(n).
A182913 := n -> denom(G(n)); seq(A182913(i), i=0..15);
MATHEMATICA
G[n_] := G[n] = Module[{j, J}, J[k_] := J[k] = Module[{j}, If[k == 0, 1, (J[k-1]/k - Sum[J[k-j]*J[j]/(j+1), {j, 1, k-1}])/(1+1/(k+1))]]; Sum[J[2*j]*2^j*6^(j-n)*Gamma[1/2+j]/(Gamma[n-j+1]*Gamma[1/2+j-n]), {j, 0, n}] - Sum[G[j]*(-4)^(j-n)*Gamma[n]/(Gamma[n-j+1]*Gamma[j]), {j, 1, n-1}]]; A182913[n_] := Denominator[G[n]]; Table[A182913[i], {i, 0, 15}] (* Jean-François Alcover, Jan 06 2014, translated from Maple *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Feb 09 2011
STATUS
approved