|
|
A182913
|
|
Denominators of an asymptotic series for the Gamma function (G. Nemes)
|
|
3
|
|
|
1, 1, 144, 12960, 207360, 2612736, 9405849600, 18811699200, 1083553873920, 4022693756928000, 300361133850624000, 210853515963138048000, 151814531493459394560000, 151814531493459394560000, 21861292535058152816640000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
G_n = A182912(n)/A182913(n). These rational numbers provide the coefficients for an asymptotic expansion of the Gamma function.
|
|
REFERENCES
|
G. Nemes, More Accurate Approximations for the Gamma Function,
Thai Journal of Mathematics Volume 9(1) (2011), 21-28.
|
|
LINKS
|
Table of n, a(n) for n=0..14.
Peter Luschny, Approximation Formulas for the Factorial Function.
|
|
FORMULA
|
Gamma(x+1) ~ x^x e^(-x) sqrt(2Pi (x+1/6)) Sum_{n>=0} G_n / (x+1/4)^n.
|
|
EXAMPLE
|
G_0 = 1, G_1 = 0, G_2 = 1/144, G_3 = -1/12960.
|
|
MAPLE
|
# See A182912 for G(n).
A182913 := n -> denom(G(n)); seq(A182913(i), i=0..15);
|
|
MATHEMATICA
|
G[n_] := G[n] = Module[{j, J}, J[k_] := J[k] = Module[{j}, If[k == 0, 1, (J[k-1]/k - Sum[J[k-j]*J[j]/(j+1), {j, 1, k-1}])/(1+1/(k+1))]]; Sum[J[2*j]*2^j*6^(j-n)*Gamma[1/2+j]/(Gamma[n-j+1]*Gamma[1/2+j-n]), {j, 0, n}] - Sum[G[j]*(-4)^(j-n)*Gamma[n]/(Gamma[n-j+1]*Gamma[j]), {j, 1, n-1}]]; A182913[n_] := Denominator[G[n]]; Table[A182913[i], {i, 0, 15}] (* Jean-François Alcover, Jan 06 2014, translated from Maple *)
|
|
CROSSREFS
|
Cf. A001163, A001164, A182912.
Sequence in context: A231854 A055352 A199406 * A231697 A238932 A230969
Adjacent sequences: A182910 A182911 A182912 * A182914 A182915 A182916
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
Peter Luschny, Feb 09 2011
|
|
STATUS
|
approved
|
|
|
|