login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203852
Expansion of e.g.f. exp( Integral -log(1-x) dx ).
5
1, 0, 1, 1, 5, 16, 79, 421, 2673, 19216, 156021, 1411873, 14117773, 154730720, 1845959179, 23826445501, 330951133537, 4923574598112, 78123812086441, 1317174439409409, 23517962293307701, 443340968936640496, 8799729204814165223, 183448995762912568885
OFFSET
0,5
COMMENTS
Row sums of A185164. - Peter Bala, Mar 14 2012
LINKS
FORMULA
E.g.f.: exp( Sum_{n>=2} x^n/(n*(n-1)) ).
E.g.f.: exp(x)*(1-x)^(1-x). - Vaclav Kotesovec, Dec 27 2013
a(n) ~ (n-1)! * (exp(1)/n + (2*log(n)+2*gamma)/n^2), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Dec 27 2013
a(n) = sum(i=1..n-1, binomial(n-1,i)*(i-1)!*a(n-i-1),i,1,n-1), a(0)=1. - Vladimir Kruchinin, Feb 23 2015
EXAMPLE
E.g.f.: A(x) = 1 + x^2/2! + x^3/3! + 5*x^4/4! + 16*x^5/5! + 79*x^6/6! +...
where: log(A(x)) = x^2/2 + x^3/6 + x^4/12 + x^5/20 + x^6/30 + x^7/42 +...
MATHEMATICA
CoefficientList[Series[Exp[x]*(1-x)^(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(-intformal(log(1-x +x*O(x^n)))), n)}
(PARI) x='x+O('x^30); Vec(serlaplace(exp(x)*(1-x)^(1-x))) \\ G. C. Greubel, Jul 17 2018
(Maxima)
a(n):=if n=0 then 1 else sum(binomial(n-1, i)*(i-1)!*a(n-i-1), i, 1, n-1); /* Vladimir Kruchinin, Feb 23 2015 */
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x)*(1-x)^(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 17 2018
CROSSREFS
Cf. A185164.
Sequence in context: A363558 A197052 A334647 * A179663 A372174 A227292
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 29 2012
STATUS
approved