login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203849
a(n) = sigma_2(n)*Fibonacci(n), where sigma_2(n) = A001157(n), the sum of squares of divisors of n.
5
1, 5, 20, 63, 130, 400, 650, 1785, 3094, 7150, 10858, 30240, 39610, 94250, 158600, 336567, 463130, 1175720, 1513522, 3693690, 5473000, 10803710, 15188210, 39412800, 48841275, 103184050, 161062760, 333701550, 432980818, 1081652000, 1295110778, 2973391785, 4299985160
OFFSET
1,2
COMMENTS
Compare g.f. to the Lambert series identity: Sum_{n>=1} n^2*x^n/(1-x^n) = Sum_{n>=1} sigma_2(n)*x^n.
LINKS
FORMULA
G.f.: Sum_{n>=1} n^2*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_2(n)*fibonacci(n)*x^n, where Lucas(n) = A000204(n).
EXAMPLE
G.f.: A(x) = x + 5*x^2 + 20*x^3 + 63*x^4 + 130*x^5 + 400*x^6 + 650*x^7 +...
where A(x) = x/(1-x-x^2) + 2^2*1*x^2/(1-3*x^2+x^4) + 3^2*2*x^3/(1-4*x^3-x^6) + 4^2*3*x^4/(1-7*x^4+x^8) + 5^2*5*x^5/(1-11*x^5-x^10) + 6^2*8*x^6/(1-18*x^6+x^12) +...+ n^2*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
MATHEMATICA
Table[DivisorSigma[2, n]*Fibonacci[n], {n, 50}] (* G. C. Greubel, Jul 17 2018 *)
PROG
(PARI) {a(n)=sigma(n, 2)*fibonacci(n)}
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(sum(m=1, n, m^2*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}
CROSSREFS
Cf. A203847, A203848, A203838, A001157 (sigma_2), A000204 (Lucas), A000045.
Sequence in context: A270631 A032340 A011854 * A271260 A270734 A271411
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 12 2012
STATUS
approved