login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203848
a(n) = sigma(n)*Fibonacci(n), where sigma(n) = A000203(n), the sum of divisors of n.
5
1, 3, 8, 21, 30, 96, 104, 315, 442, 990, 1068, 4032, 3262, 9048, 14640, 30597, 28746, 100776, 83620, 284130, 350272, 637596, 687768, 2782080, 2325775, 5098506, 7856720, 17797416, 15426870, 59906880, 43080608, 137233467, 169179744, 307955898, 442918320, 1358662032
OFFSET
1,2
COMMENTS
Compare g.f. to the Lambert series identity: Sum_{n>=1} n*x^n/(1-x^n) = Sum_{n>=1} sigma(n)*x^n.
LINKS
FORMULA
G.f.: Sum_{n>=1} n*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma(n)*fibonacci(n)*x^n, where Lucas(n) = A000204(n).
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 8*x^3 + 21*x^4 + 30*x^5 + 96*x^6 + 104*x^7 +...
where A(x) = x/(1-x-x^2) + 2*1*x^2/(1-3*x^2+x^4) + 3*2*x^3/(1-4*x^3-x^6) + 4*3*x^4/(1-7*x^4+x^8) + 5*5*x^5/(1-11*x^5-x^10) + 6*8*x^6/(1-18*x^6+x^12) +...+ n*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
MATHEMATICA
Table[DivisorSigma[1, n] Fibonacci[n], {n, 40}] (* Wesley Ivan Hurt, Aug 10 2016 *)
PROG
(PARI) {a(n)=sigma(n)*fibonacci(n)}
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(sum(m=1, n, m*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}
(Magma) [DivisorSigma(1, n)*Fibonacci(n): n in [1..40]]; // Vincenzo Librandi, Aug 12 2016
CROSSREFS
Cf. A203847, A203849, A203838, A000203 (sigma), A000204 (Lucas), A000045.
Sequence in context: A101643 A334136 A046815 * A160404 A103736 A172243
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Jan 12 2012
STATUS
approved