login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203853
a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^2, where Lucas(n) = A000204(n).
9
1, 4, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, 304290, 750120, 1854400, 4600200, 11440548, 28527320, 71289000, 178526880, 447910470, 1125750120, 2833885800, 7144449920, 18036373140, 45591631800, 115381697740, 292329067800, 741410800830
OFFSET
1,2
COMMENTS
Apparently the same as A032170, if n > 2. - R. J. Mathar, Jan 11 2012
LINKS
FORMULA
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^3 * x^n/n), which is the g.f. of A203803.
a(n) ~ phi^(2*n) / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 02 2017
EXAMPLE
G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^4 * (1-4*x^3-x^6)^5 * (1-7*x^4+x^8)^10 * (1-11*x^5-x^10)^24 * (1-18*x^6+x^12)^50 * (1-29*x^7-x^14)^120 * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) * ...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^3 * x^n/n ) = g.f. of A203803:
F(x) = 1 + x + 14*x^2 + 35*x^3 + 205*x^4 + 744*x^5 + 3414*x^6 + ...
where
log(F(x)) = x + 3^3*x^2/2 + 4^3*x^3/3 + 7^3*x^4/4 + 11^3*x^5/5 + 18^3*x^6/6 + 29^3*x^7/7 + 47^3*x^8/8 + ... + Lucas(n)^3*x^n/n + ...
MATHEMATICA
a[n_]:= 1/n DivisorSum[n, MoebiusMu[n/#] LucasL[#]^2 &]; Array[a, 30] (* G. C. Greubel, Dec 25 2017 *)
PROG
(PARI) {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^2)/n)}
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(F=exp(sum(m=1, n, Lucas(m)^3*x^m/m)+x*O(x^n))); if(n==1, 1, polcoeff(F*prod(k=1, n-1, (1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)), n)/Lucas(n))}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 07 2012
STATUS
approved