|
|
A224334
|
|
Number of idempotent 3 X 3 0..n matrices of rank 2.
|
|
3
|
|
|
21, 51, 93, 147, 213, 291, 381, 483, 597, 723, 861, 1011, 1173, 1347, 1533, 1731, 1941, 2163, 2397, 2643, 2901, 3171, 3453, 3747, 4053, 4371, 4701, 5043, 5397, 5763, 6141, 6531, 6933, 7347, 7773, 8211, 8661, 9123, 9597, 10083, 10581, 11091, 11613, 12147
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 6*n^2 + 12*n + 3.
G.f.: 3*x*(7 - 4*x + x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)
|
|
EXAMPLE
|
Some solutions for n=3:
..1..2..0....1..0..0....1..0..0....1..0..1....1..0..2....0..0..0....0..0..0
..0..0..0....1..0..2....0..1..0....0..1..3....0..1..2....3..1..0....1..1..0
..0..1..1....0..0..1....0..0..0....0..0..0....0..0..0....1..0..1....2..0..1
|
|
PROG
|
(PARI) Vec(3*x*(7 - 4*x + x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, Feb 23 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|