login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224331
Number of idempotent n X n 0..6 matrices of rank n-1.
1
1, 26, 291, 2740, 24005, 201678, 1647079, 13176680, 103766409, 807072130, 6214455467, 47455841820, 359873467213, 2712892291382, 20346692185455, 151921968318160, 1129919639366417, 8374698503539434, 61879716720597043
OFFSET
1,2
COMMENTS
Column 6 of A224333.
FORMULA
a(n) = n*(2*7^(n-1)-1).
a(n) = 16*a(n-1) - 78*a(n-2) + 112*a(n-3) - 49*a(n-4).
G.f.: x*(1 + 10*x - 47*x^2) / ((1 - x)^2*(1 - 7*x)^2). - Colin Barker, Aug 29 2018
EXAMPLE
Some solutions for n=3:
..1..5..0....0..3..6....1..0..0....0..0..0....1..0..0....1..0..0....0..0..0
..0..0..0....0..1..0....0..1..0....6..1..0....0..1..0....0..1..0....2..1..0
..0..2..1....0..0..1....0..0..0....4..0..1....1..6..0....3..4..0....3..0..1
MATHEMATICA
Table[n*(2*7^(n-1)-1), {n, 1, 40}] (* or *)
CoefficientList[Series[(1 + 10*x - 47*x^2) / ((1 - x)^2*(1 - 7*x)^2) , {x, 0, 40}], x] (* Stefano Spezia, Aug 29 2018 *)
PROG
(PARI) Vec(x*(1 + 10*x - 47*x^2) / ((1 - x)^2*(1 - 7*x)^2) + O(x^40)) \\ Colin Barker, Aug 29 2018
CROSSREFS
Cf. A224333.
Sequence in context: A336732 A227332 A020925 * A125414 A208600 A010831
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, formula via M. F. Hasler William J. Keith and Rob Pratt in the Sequence Fans Mailing List, Apr 03 2013
STATUS
approved