login
A224331
Number of idempotent n X n 0..6 matrices of rank n-1.
1
1, 26, 291, 2740, 24005, 201678, 1647079, 13176680, 103766409, 807072130, 6214455467, 47455841820, 359873467213, 2712892291382, 20346692185455, 151921968318160, 1129919639366417, 8374698503539434, 61879716720597043
OFFSET
1,2
COMMENTS
Column 6 of A224333.
FORMULA
a(n) = n*(2*7^(n-1)-1).
a(n) = 16*a(n-1) - 78*a(n-2) + 112*a(n-3) - 49*a(n-4).
G.f.: x*(1 + 10*x - 47*x^2) / ((1 - x)^2*(1 - 7*x)^2). - Colin Barker, Aug 29 2018
EXAMPLE
Some solutions for n=3:
..1..5..0....0..3..6....1..0..0....0..0..0....1..0..0....1..0..0....0..0..0
..0..0..0....0..1..0....0..1..0....6..1..0....0..1..0....0..1..0....2..1..0
..0..2..1....0..0..1....0..0..0....4..0..1....1..6..0....3..4..0....3..0..1
MATHEMATICA
Table[n*(2*7^(n-1)-1), {n, 1, 40}] (* or *)
CoefficientList[Series[(1 + 10*x - 47*x^2) / ((1 - x)^2*(1 - 7*x)^2) , {x, 0, 40}], x] (* Stefano Spezia, Aug 29 2018 *)
PROG
(PARI) Vec(x*(1 + 10*x - 47*x^2) / ((1 - x)^2*(1 - 7*x)^2) + O(x^40)) \\ Colin Barker, Aug 29 2018
CROSSREFS
Cf. A224333.
Sequence in context: A336732 A227332 A020925 * A125414 A208600 A010831
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, formula via M. F. Hasler William J. Keith and Rob Pratt in the Sequence Fans Mailing List, Apr 03 2013
STATUS
approved