login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010831
Expansion of Product_{k>=1} (1-x^k)^26.
2
1, -26, 299, -1950, 7475, -13754, -12220, 132756, -276575, 0, 1010100, -1486030, -519961, 2486300, 829725, -2215486, -11643060, 18523050, 16317925, -42861650, 0, 11010090, 59644221, -5743400, -138219900
OFFSET
0,2
REFERENCES
Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
LINKS
FORMULA
a(0) = 1, a(n) = -(26/n) * Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Aug 13 2023
EXAMPLE
1 - 26*x + 299*x^2 - 1950*x^3 + 7475*x^4 - 13754*x^5 - 12220*x^6 + 132756*x^7 + ...
MATHEMATICA
CoefficientList[Expand@ Product[(1 - x^k)^26, {k, 25}], x, 25] (* Michael De Vlieger, Jun 08 2016 *)
CROSSREFS
Column k=26 of A286354.
Sequence in context: A224331 A125414 A208600 * A022718 A014472 A000498
KEYWORD
sign
STATUS
approved