login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010833
Expansion of Product_{k>=1} (1-x^k)^28.
1
1, -28, 350, -2520, 11025, -26180, 4158, 184600, -554400, 401100, 1496964, -3920280, 1444625, 6224400, -4972350, -7121296, -8308965, 50796900, -8971200, -121968000, 94011435, 80598288, 20282500, -175228200
OFFSET
0,2
REFERENCES
Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
FORMULA
a(0) = 1, a(n) = -(28/n) * Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Aug 13 2023
EXAMPLE
1 - 28*x + 350*x^2 - 2520*x^3 + 11025*x^4 - 26180*x^5 + 4158*x^6 + 184600*x^7 + ...
CROSSREFS
Column k=28 of A286354.
Sequence in context: A134288 A200968 A285739 * A022720 A272174 A173421
KEYWORD
sign
STATUS
approved