OFFSET
0,2
COMMENTS
Seventh column of Narayana triangle A001263.
In the Narayana triangle N(n,k)= A001263(n,k) the sequence of column nr. k>=1 (without leading zeros coincides with the sequence of the diagonal d=k-1>=0 (d=0 for the main diagonal N(n,n)).
Kekulé numbers K(O(1,6,n)) for certain benzenoids (see the Cyvin-Gutman reference, p. 105, eq. (i)).
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; Prop. 8.4, case n=8. - N. J. A. Sloane, Aug 28 2010.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 25.
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
a(n) = A001263(n+7,7).
O.g.f.: (1 + 15*x + 50*x^2 + 50*x^3 + 15*x^4 + x^5)/(1-x)^13. Numerator polynomial is the sixth row polynomial of the Narayana triangle.
a(n) = binomial(n+6,6)^2 - binomial(n+6,5)*binomial(n+6,7). - Gary Detlefs, Dec 05 2011
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 1741019/20 - 8820*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 210*Pi^2 - 41433/20. (End)
MAPLE
a := n -> ((n+1)*((n+2)*(n+3)*(n+4)*(n+5)*(n+6))^2*(n+7))/3628800:
seq(a(n), n=0..25); # Peter Luschny, Sep 01 2016
MATHEMATICA
Table[Binomial[n+7, 7] Binomial[n+7, 6]/(n+7), {n, 0, 30}] (* or *) LinearRecurrence[{13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1}, {1, 28, 336, 2520, 13860, 60984, 226512, 736164, 2147145, 5725720, 14158144, 32821152, 71954064}, 30] (* Harvey P. Dale, Sep 28 2016 *)
PROG
(PARI) Vec((1+15*x+50*x^2+50*x^3+15*x^4+x^5)/(1-x)^13 + O(x^30)) \\ Altug Alkan, Sep 01 2016
(PARI) vector(30, n, binomial(n+6, 7)*binomial(n+5, 5)/6) \\ G. C. Greubel, Aug 27 2019
(Magma) [Binomial(n+7, 7)*Binomial(n+6, 5)/6: n in [0..30]]; // G. C. Greubel, Aug 27 2019
(Sage) [binomial(n+7, 7)*binomial(n+6, 5)/6 for n in (0..30)] # G. C. Greubel, Aug 27 2019
(GAP) List([0..30], n-> Binomial(n+7, 7)*Binomial(n+6, 5)/6); # G. C. Greubel, Aug 27 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 13 2007
EXTENSIONS
Edited by N. J. A. Sloane, Aug 28 2010
STATUS
approved