login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159520
Numerator of Hermite(n, 14/15).
1
1, 28, 334, -15848, -894644, 3476368, 2110287304, 49701850912, -5255753182064, -326087752380992, 12155343320691424, 1807744498693823872, -9552103473995480384, -10029279190218522359552, -224940012003245065821056, 56886138562285829022188032
OFFSET
0,2
LINKS
DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
FORMULA
D-finite with recurrence a(n) -28*a(n-1) +450*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jun 11 2018: (Start)
a(n) = 15^n * Hermite(n,14/15).
E.g.f.: exp(28*x-225*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(28/15)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 28/15, 334/225, -15848/3375, -894644/50625, 3476368/759375
MAPLE
A159520 := proc(n)
orthopoly[H](n, 14/15) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
MATHEMATICA
Numerator[Table[HermiteH[n, 14/15], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2011 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 14/15)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(28/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 11 2018
CROSSREFS
Cf. A001024 (denominators).
Sequence in context: A125416 A241038 A055753 * A027820 A092713 A134288
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved