login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159520 Numerator of Hermite(n, 14/15). 1
1, 28, 334, -15848, -894644, 3476368, 2110287304, 49701850912, -5255753182064, -326087752380992, 12155343320691424, 1807744498693823872, -9552103473995480384, -10029279190218522359552, -224940012003245065821056, 56886138562285829022188032 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

Conjecture: a(n) -28*a(n-1) +450*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 16 2014

From G. C. Greubel, Jun 11 2018: (Start)

a(n) = 15^n * Hermite(n,14/15).

E.g.f.: exp(28*x-225*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(28/15)^(n-2*k)/(k!*(n-2*k)!)). (End)

EXAMPLE

Numerators of 1, 28/15, 334/225, -15848/3375, -894644/50625, 3476368/759375

MAPLE

A159520 := proc(n)

        orthopoly[H](n, 14/15) ;

        numer(%) ;

end proc: # R. J. Mathar, Feb 16 2014

MATHEMATICA

Numerator[Table[HermiteH[n, 14/15], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2011 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 14/15)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(28/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 11 2018

CROSSREFS

Cf. A001024 (denominators).

Sequence in context: A125416 A241038 A055753 * A027820 A092713 A134288

Adjacent sequences:  A159517 A159518 A159519 * A159521 A159522 A159523

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 01:56 EDT 2020. Contains 333153 sequences. (Running on oeis4.)