login
A224335
Number of idempotent 4X4 0..n matrices of rank 3.
1
60, 212, 508, 996, 1724, 2740, 4092, 5828, 7996, 10644, 13820, 17572, 21948, 26996, 32764, 39300, 46652, 54868, 63996, 74084, 85180, 97332, 110588, 124996, 140604, 157460, 175612, 195108, 215996, 238324, 262140, 287492, 314428, 342996, 373244
OFFSET
1,1
COMMENTS
Row 4 of A224333.
FORMULA
a(n) = 8*n^3 + 24*n^2 + 24*n + 4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Colin Barker, Sep 20 2014
G.f.: -4*x*(x^3-5*x^2+7*x-15) / (x-1)^4. - Colin Barker, Sep 20 2014
EXAMPLE
Some solutions for n=3
..1..0..0..0....1..0..0..0....1..0..0..0....1..0..0..3....1..0..0..0
..0..1..0..0....2..0..1..1....0..1..1..0....0..1..0..2....0..1..0..0
..3..2..0..0....0..0..1..0....0..0..0..0....0..0..1..1....1..2..0..1
..0..0..0..1....0..0..0..1....0..0..2..1....0..0..0..0....0..0..0..1
PROG
(PARI) Vec(-4*x*(x^3-5*x^2+7*x-15)/(x-1)^4 + O(x^100)) \\ Colin Barker, Sep 20 2014
CROSSREFS
Sequence in context: A378058 A082529 A126248 * A068628 A256985 A075287
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, formula via M. F. Hasler William J. Keith and Rob Pratt in the Sequence Fans Mailing List, Apr 03 2013
STATUS
approved