login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247495
Generalized Motzkin numbers: Square array read by descending antidiagonals, T(n, k) = k!*[x^k](exp(n*x)* BesselI_{1}(2*x)/x), n>=0, k>=0.
5
1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 2, 4, 5, 3, 1, 0, 9, 14, 10, 4, 1, 5, 21, 42, 36, 17, 5, 1, 0, 51, 132, 137, 76, 26, 6, 1, 14, 127, 429, 543, 354, 140, 37, 7, 1, 0, 323, 1430, 2219, 1704, 777, 234, 50, 8, 1, 42, 835, 4862, 9285, 8421, 4425, 1514, 364, 65, 9, 1
OFFSET
0,8
COMMENTS
This two-dimensional array of numbers can be seen as a generalization of the Motzkin numbers A001006 for two reasons: The case n=1 reduces to the Motzkin numbers and the columns are the values of the Motzkin polynomials M_{k}(x) = sum_{j=0..k} A097610(k,j)*x^j evaluated at the nonnegative integers.
LINKS
FORMULA
T(n,k) = (n*(2*k+1)*T(n,k-1)-(n-2)*(n+2)*(k-1)*T(n,k-2))/(k+2) for k>=2.
T(n,k) = Sum_{j=0..floor(k/2)} n^(k-2*j)*binomial(k,2*j)*binomial(2*j,j)/(j+1).
T(n,k) = n^k*hypergeom([(1-k)/2,-k/2], [2], 4/n^2) for n>0.
T(n,n) = A247496(n).
O.g.f. for row n: (1-n*x-sqrt(((n-2)*x-1)*((n+2)*x-1)))/(2*x^2).
O.g.f. for row n: R(x)/x where R(x) is series reversion of x/(1+n*x+x^2).
E.g.f. for row n: exp(n*x)*hypergeom([],[2],x^2).
O.g.f. for column k: the k-th column consists of the values of the k-th Motzkin polynomial M_{k}(x) evaluated at x = 0,1,2,...; M_{k}(x) = sum_{j=0..k} A097610(k,j)*x^j = sum_{j=0..k} (-1)^j*binomial(k,j)*A001006(j)*(x+1)^(k-j).
O.g.f. for column k: sum_{j=0..k} (-1)^(k+1)*A247497(k,j)/(x-1)^(j+1). - Peter Luschny, Dec 14 2014
O.g.f. for row n: 1/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017
T(n,k) is the coefficient of x^k in the expansion of 1/(k+1) * (1 + n*x + x^2)^(k+1). - Seiichi Manyama, May 07 2019
EXAMPLE
Square array starts:
[n\k][0][1] [2] [3] [4] [5] [6] [7] [8]
[0] 1, 0, 1, 0, 2, 0, 5, 0, 14, ... A126120
[1] 1, 1, 2, 4, 9, 21, 51, 127, 323, ... A001006
[2] 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ... A000108
[3] 1, 3, 10, 36, 137, 543, 2219, 9285, 39587, ... A002212
[4] 1, 4, 17, 76, 354, 1704, 8421, 42508, 218318, ... A005572
[5] 1, 5, 26, 140, 777, 4425, 25755, 152675, 919139, ... A182401
[6] 1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478, ... A025230
.
Triangular array starts:
1,
0, 1,
1, 1, 1,
0, 2, 2, 1,
2, 4, 5, 3, 1,
0, 9, 14, 10, 4, 1,
5, 21, 42, 36, 17, 5, 1,
0, 51, 132, 137, 76, 26, 6, 1.
MAPLE
# RECURRENCE
T := proc(n, k) option remember; if k=0 then 1 elif k=1 then n else
(n*(2*k+1)*T(n, k-1)-(n-2)*(n+2)*(k-1)*T(n, k-2))/(k+2) fi end:
seq(print(seq(T(n, k), k=0..9)), n=0..6);
# OGF (row)
ogf := n -> (1-n*x-sqrt(((n-2)*x-1)*((n+2)*x-1)))/(2*x^2):
seq(print(seq(coeff(series(ogf(n), x, 12), x, k), k=0..9)), n=0..6);
# EGF (row)
egf := n -> exp(n*x)*hypergeom([], [2], x^2):
seq(print(seq(k!*coeff(series(egf(n), x, k+2), x, k), k=0..9)), n=0..6);
# MOTZKIN polynomial (column)
A097610 := proc(n, k) if type(n-k, odd) then 0 else n!/(k!*((n-k)/2)!^2* ((n-k)/2+1)) fi end: M := (k, x) -> add(A097610(k, j)*x^j, j=0..k):
seq(print(seq(M(k, n), n=0..9)), k=0..6);
# OGF (column)
col := proc(n, len) local G; G := A247497_row(n); (-1)^(n+1)* add(G[k+1]/(x-1)^(k+1), k=0..n); seq(coeff(series(%, x, len+1), x, j), j=0..len) end: seq(print(col(n, 8)), n=0..6); # Peter Luschny, Dec 14 2014
MATHEMATICA
T[0, k_] := If[EvenQ[k], CatalanNumber[k/2], 0];
T[n_, k_] := n^k*Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4/n^2];
Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
PROG
(Sage)
def A247495(n, k):
if n==0: return(k//2+1)*factorial(k)/factorial(k//2+1)^2 if is_even(k) else 0
return n^k*hypergeometric([(1-k)/2, -k/2], [2], 4/n^2).simplify()
for n in (0..7): print([A247495(n, k) for k in range(11)])
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Dec 11 2014
STATUS
approved