login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247497
Triangle read by rows, T(n,k) (n>=0, 0<=k<=n) coefficients of the partial fraction decomposition of rational functions generating the columns of A247495 (the Motzkin polynomials evaluated at nonnegative integers).
1
1, 1, 1, 2, 3, 2, 4, 10, 12, 6, 9, 33, 62, 60, 24, 21, 111, 300, 450, 360, 120, 51, 378, 1412, 3000, 3720, 2520, 720, 127, 1303, 6552, 18816, 32760, 34440, 20160, 5040, 323, 4539, 30186, 113820, 264264, 388080, 352800, 181440, 40320
OFFSET
0,4
FORMULA
Let M_{n}(x) = sum_{k=0..n} A097610(n,k)*x^k denote the Motzkin polynomials. The T(n,k) are implicitly defined by:
sum_{k=0..n} (-1)^(n+1)*T(n,k)/(x-1)^(k+1) = sum_{k>=0} x^k*M_n(k).
T(n, 0) = A001006(n) (Motzkin numbers).
T(n, n) = A000142(n) = n!.
T(n, 1) = A058987(n+1) for n>=1.
T(n,n-1)= A001710(n+1) for n>=1.
EXAMPLE
Triangle starts:
[ 1],
[ 1, 1],
[ 2, 3, 2],
[ 4, 10, 12, 6],
[ 9, 33, 62, 60, 24],
[ 21, 111, 300, 450, 360, 120],
[ 51, 378, 1412, 3000, 3720, 2520, 720],
[127, 1303, 6552, 18816, 32760, 34440, 20160, 5040].
.
[n=3] -> [4,10,12,6] -> 4/(x-1)+10/(x-1)^2+12/(x-1)^3+6/(x-1)^4 = 2*x*(-x+2*x^2+2)/(x-1)^4; generating function of A247495[n,3] = 0,4,14, 36,...
[n=4] -> [9,33,62,60,24] -> -9/(x-1)-33/(x-1)^2-62/(x-1)^3-60/(x-1)^4-24/(x-1)^5 = -(2-x-3*x^3+17*x^2+9*x^4)/(x-1)^5; generating function of A247495[n,4] = 2,9,42,137,...
MAPLE
A247497_row := proc(n) local A, M, p;
A := (n, k) -> `if`(type(n-k, odd), 0, n!/(k!*((n-k)/2)!^2*((n-k)/2+1))):
M := (k, x) -> add(A(k, j)*x^j, j=0..k): # Motzkin polynomial
p := expand(sum(x^k*M(n, k), k=0..infinity));
[seq((-1)^(n+1)*coeff(convert(p, parfrac), (x-1)^(-j)), j=1..n+1)] end:
seq(print(A247497_row(n)), n=0..7);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Dec 13 2014
STATUS
approved