OFFSET
0,4
FORMULA
Let M_{n}(x) = sum_{k=0..n} A097610(n,k)*x^k denote the Motzkin polynomials. The T(n,k) are implicitly defined by:
sum_{k=0..n} (-1)^(n+1)*T(n,k)/(x-1)^(k+1) = sum_{k>=0} x^k*M_n(k).
T(n, 0) = A001006(n) (Motzkin numbers).
T(n, n) = A000142(n) = n!.
T(n, 1) = A058987(n+1) for n>=1.
T(n,n-1)= A001710(n+1) for n>=1.
EXAMPLE
Triangle starts:
[ 1],
[ 1, 1],
[ 2, 3, 2],
[ 4, 10, 12, 6],
[ 9, 33, 62, 60, 24],
[ 21, 111, 300, 450, 360, 120],
[ 51, 378, 1412, 3000, 3720, 2520, 720],
[127, 1303, 6552, 18816, 32760, 34440, 20160, 5040].
.
[n=3] -> [4,10,12,6] -> 4/(x-1)+10/(x-1)^2+12/(x-1)^3+6/(x-1)^4 = 2*x*(-x+2*x^2+2)/(x-1)^4; generating function of A247495[n,3] = 0,4,14, 36,...
[n=4] -> [9,33,62,60,24] -> -9/(x-1)-33/(x-1)^2-62/(x-1)^3-60/(x-1)^4-24/(x-1)^5 = -(2-x-3*x^3+17*x^2+9*x^4)/(x-1)^5; generating function of A247495[n,4] = 2,9,42,137,...
MAPLE
A247497_row := proc(n) local A, M, p;
A := (n, k) -> `if`(type(n-k, odd), 0, n!/(k!*((n-k)/2)!^2*((n-k)/2+1))):
M := (k, x) -> add(A(k, j)*x^j, j=0..k): # Motzkin polynomial
p := expand(sum(x^k*M(n, k), k=0..infinity));
[seq((-1)^(n+1)*coeff(convert(p, parfrac), (x-1)^(-j)), j=1..n+1)] end:
seq(print(A247497_row(n)), n=0..7);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Dec 13 2014
STATUS
approved