Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Dec 14 2014 08:08:29
%S 1,1,1,2,3,2,4,10,12,6,9,33,62,60,24,21,111,300,450,360,120,51,378,
%T 1412,3000,3720,2520,720,127,1303,6552,18816,32760,34440,20160,5040,
%U 323,4539,30186,113820,264264,388080,352800,181440,40320
%N Triangle read by rows, T(n,k) (n>=0, 0<=k<=n) coefficients of the partial fraction decomposition of rational functions generating the columns of A247495 (the Motzkin polynomials evaluated at nonnegative integers).
%F Let M_{n}(x) = sum_{k=0..n} A097610(n,k)*x^k denote the Motzkin polynomials. The T(n,k) are implicitly defined by:
%F sum_{k=0..n} (-1)^(n+1)*T(n,k)/(x-1)^(k+1) = sum_{k>=0} x^k*M_n(k).
%F T(n, 0) = A001006(n) (Motzkin numbers).
%F T(n, n) = A000142(n) = n!.
%F T(n, 1) = A058987(n+1) for n>=1.
%F T(n,n-1)= A001710(n+1) for n>=1.
%e Triangle starts:
%e [ 1],
%e [ 1, 1],
%e [ 2, 3, 2],
%e [ 4, 10, 12, 6],
%e [ 9, 33, 62, 60, 24],
%e [ 21, 111, 300, 450, 360, 120],
%e [ 51, 378, 1412, 3000, 3720, 2520, 720],
%e [127, 1303, 6552, 18816, 32760, 34440, 20160, 5040].
%e .
%e [n=3] -> [4,10,12,6] -> 4/(x-1)+10/(x-1)^2+12/(x-1)^3+6/(x-1)^4 = 2*x*(-x+2*x^2+2)/(x-1)^4; generating function of A247495[n,3] = 0,4,14, 36,...
%e [n=4] -> [9,33,62,60,24] -> -9/(x-1)-33/(x-1)^2-62/(x-1)^3-60/(x-1)^4-24/(x-1)^5 = -(2-x-3*x^3+17*x^2+9*x^4)/(x-1)^5; generating function of A247495[n,4] = 2,9,42,137,...
%p A247497_row := proc(n) local A, M, p;
%p A := (n,k) -> `if`(type(n-k, odd),0,n!/(k!*((n-k)/2)!^2*((n-k)/2+1))):
%p M := (k,x) -> add(A(k,j)*x^j,j=0..k): # Motzkin polynomial
%p p := expand(sum(x^k*M(n,k),k=0..infinity));
%p [seq((-1)^(n+1)*coeff(convert(p,parfrac),(x-1)^(-j)),j=1..n+1)] end:
%p seq(print(A247497_row(n)),n=0..7);
%Y Cf. A247495, A097610, A001006, A058987, A001710.
%K nonn,tabl
%O 0,4
%A _Peter Luschny_, Dec 13 2014