login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247499
a(n) = hypergeom([1, -n, -n-1], [2], 1).
3
1, 2, 6, 25, 135, 896, 7042, 63841, 654901, 7491574, 94470926, 1301130777, 19423173211, 312256205652, 5376809244458, 98700795776641, 1923638785344457, 39661911384761866, 862362968121278038, 19717031047061570777, 472849461034147171791, 11866892471399392308232
OFFSET
0,2
LINKS
FORMULA
a(n) = n!*hypergeom([-n-1], [2], -1) - 1/((n+1)*(n+2)). (original name)
a(n) = Sum_{k=0..n} (n!/k!)*binomial(n+2, k+1)/(n+2).
From Vaclav Kotesovec, Jul 05 2018: (Start)
Recurrence: (n-3)*(n+2)*a(n) = 2*(n^3 - n^2 - 5*n - 1)*a(n-1) - (n-1)*(n^3 - n^2 - 3*n - 2)*a(n-2) + (n-2)^2*(n-1)^2*a(n-3).
a(n) ~ exp(2*sqrt(n) - n - 1/2) * n^(n - 1/4) / sqrt(2). (End)
MAPLE
A247499 := n -> hypergeom([1, -n, -n-1], [2], 1):
seq(simplify(A247499(n)), n = 0..21);
MATHEMATICA
Table[Sum[n!/k!*Binomial[n+2, k+1]/(n+2), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 05 2018 *)
PROG
(Haskell)
a247499 = sum . a247500_row -- Reinhard Zumkeller, Oct 19 2014
CROSSREFS
Row sums of A247500.
Sequence in context: A143917 A009326 A001258 * A124373 A010787 A008933
KEYWORD
nonn
AUTHOR
Peter Luschny, Oct 17 2014
EXTENSIONS
Name updated by Peter Luschny, Jan 09 2022
STATUS
approved