The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001258 Number of labeled n-node trees with unlabeled end-points. (Formerly M1678 N0660) 3
 1, 1, 2, 6, 25, 135, 892, 6937, 61886, 621956, 6946471, 85302935, 1141820808, 16540534553, 257745010762, 4298050731298, 76356627952069, 1439506369337319, 28699241994332940, 603229325513240569, 13330768181611378558, 308967866671489907656, 7493481669479297191451, 189793402599733802743015, 5010686896406348299630712 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 REFERENCES J.W. Moon, Counting Labelled Trees, Issue 1 of Canadian mathematical monographs, Canadian Mathematical Congress, 1970, Sec. 3.9. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS N. J. A. Sloane, Table of n, a(n) for n = 2..100 F. Harary, A. Mowshowitz and J. Riordan, Labeled trees with unlabeled end-points, J. Combin. Theory, 6 (1969), 60-64. Index entries for sequences related to trees MAPLE # This gives the sequence but without the initial 1: with(combinat); R:=proc(n, k) # this gives A055314 if n=1 then if k=1 then RETURN(1) else RETURN(0); fi elif (n=2 and k=2) then RETURN(1) elif (n=2 and k>2) then RETURN(0) else stirling2(n-2, n-k)*n!/k!; fi; end; Rstar:=proc(n, k) # this gives A213262 if k=2 then if n <=4 then RETURN(1); else RETURN((n-2)!/2); fi; else if k <= n-2 then add(binomial(n-i-1, k-i)*R(n-k, i), i=2..n-1); elif k=n-1 then 1; else 0; fi; fi; end; [seq(add(Rstar(n, k), k=2..n-1), n=3..20)]; MATHEMATICA r[n_, k_] := Which[n == 1, If[k == 1, Return[1], Return[0]], n == 2 && k == 2, Return[1], n == 2 && k > 2, Return[0], n > k > 0, StirlingS2[n-2, n-k]*n!/k!, True, 0]; rstar[n_, k_] := Which[k == 2, If[n <= 4, Return[1], Return[(n-2)!/2]], k <= n-2, Sum[Binomial[n-i-1, k-i]*r[n-k, i], {i, 2, n-1}], k == n-1, 1, True, 0]; Join[{1}, Table[Sum[rstar[n, k], {k, 2, n-1}], {n, 3, 26}]] (* Jean-François Alcover, Oct 08 2012, translated from Maple *) tStar[2] = 1; tStar[n_] := Sum[(-1)^j Binomial[n - k, j] Binomial[n - 1 - j, k] (n - k - j)^(n - k - 2), {k, 2, n - 1}, {j, 0, n - k - 1}]; Table[tStar[n], {n, 2, 20}] (* David Callan, Jul 18 2014, after Moon reference *) CROSSREFS Cf. A151880. Sequence in context: A317022 A143917 A009326 * A247499 A124373 A010787 Adjacent sequences: A001255 A001256 A001257 * A001259 A001260 A001261 KEYWORD nonn,nice AUTHOR N. J. A. Sloane. More terms from N. J. A. Sloane, Jun 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 15:27 EDT 2023. Contains 365826 sequences. (Running on oeis4.)