login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124373
O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*(k+1)/2*x).
4
1, 1, 2, 6, 25, 135, 909, 7417, 71698, 806968, 10427825, 152915697, 2519879761, 46276398129, 940296067422, 21007099850230, 513172107841525, 13640345170943527, 392780078386164389, 12204609567437300313, 407757149671568266678, 14600807659376773500696
OFFSET
0,3
COMMENTS
Starting (1, 2, 6, 25, ...) = row sums of triangle A080248. - Gary W. Adamson, Jul 11 2011
LINKS
FORMULA
O.g.f.: A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-3x)) + x^3/((1-x)*(1-3x)*(1-6x)) + x^3/((1-x)*(1-3x)*(1-6x)*(1-10x)) + ...
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-(k+1)*(k+2)*x/2)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
EXAMPLE
Also generated by iterated binomial transforms in the following way:
[1,2,6,25,135,909,7417,71698,...] = binomial([1,1,3,12,64,433,3567,...]);
[1,3,12,64,433,3567,34905,...] = binomial^2([1,1,4,20,129,1045,...]);
[1,4,20,129,1045,10209,117069,...] = binomial^3([1,1,5,30,226,2121,...]);
[1,5,30,226,2121,23919,314605,...] = binomial^4([1,1,6,42,361,3835,...]);
[1,6,42,361,3835,48885,724569,...] = binomial^5([1,1,7,56,540,6385,...]);
[1,7,56,540,6385,90519,1490457,..] = binomial^6([1,1,8,72,769,9993,...]);
etc.
MAPLE
b:= proc(n, m) option remember; `if`(n=0, 1,
b(n-1, m)*m*(m+1)/2 +b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 10 2019
MATHEMATICA
b[n_, m_] := b[n, m] = If[n == 0, 1, b[n-1, m] m(m+1)/2 + b[n-1, m+1]];
a[n_] := b[n, 0];
a /@ Range[0, 23] (* Jean-François Alcover, Nov 02 2020, after Alois P. Heinz *)
PROG
(PARI) a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-j*(j+1)/2*x+x*O(x^n))), n)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 28 2006
STATUS
approved