OFFSET
0,3
COMMENTS
Starting (1, 2, 6, 25, ...) = row sums of triangle A080248. - Gary W. Adamson, Jul 11 2011
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..358
FORMULA
O.g.f.: A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-3x)) + x^3/((1-x)*(1-3x)*(1-6x)) + x^3/((1-x)*(1-3x)*(1-6x)*(1-10x)) + ...
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-(k+1)*(k+2)*x/2)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
EXAMPLE
Also generated by iterated binomial transforms in the following way:
[1,2,6,25,135,909,7417,71698,...] = binomial([1,1,3,12,64,433,3567,...]);
[1,3,12,64,433,3567,34905,...] = binomial^2([1,1,4,20,129,1045,...]);
[1,4,20,129,1045,10209,117069,...] = binomial^3([1,1,5,30,226,2121,...]);
[1,5,30,226,2121,23919,314605,...] = binomial^4([1,1,6,42,361,3835,...]);
[1,6,42,361,3835,48885,724569,...] = binomial^5([1,1,7,56,540,6385,...]);
[1,7,56,540,6385,90519,1490457,..] = binomial^6([1,1,8,72,769,9993,...]);
etc.
MAPLE
b:= proc(n, m) option remember; `if`(n=0, 1,
b(n-1, m)*m*(m+1)/2 +b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 10 2019
MATHEMATICA
b[n_, m_] := b[n, m] = If[n == 0, 1, b[n-1, m] m(m+1)/2 + b[n-1, m+1]];
a[n_] := b[n, 0];
a /@ Range[0, 23] (* Jean-François Alcover, Nov 02 2020, after Alois P. Heinz *)
PROG
(PARI) a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-j*(j+1)/2*x+x*O(x^n))), n)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 28 2006
STATUS
approved