login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124374
Primes of the form !(k + 1)/2 = Sum_{i=0..k} i!/2.
1
2, 5, 17, 2957, 23117, 204557, 2018957, 4578979328975537786697650470157, 12572230784049013026617689884981971446439568309146114097251787122217783800812199225999909965168264460210470157
OFFSET
1,1
COMMENTS
Sum_{i=0..k} i! = k! + !k = A003422(k+1), where !k is left factorial !k = Sum_{i=0..k-1} i! = A003422(k). Left factorials are even for k > 1. Corresponding numbers k such that Sum_{i=0..k} i!/2 = A003422(k+1)/2 is prime are listed in A124375(n) = {2, 3, 4, 7, 8, 9, 10, 29, 75, 162, 270, 272, 353, ...}.
LINKS
Eric Weisstein's World of Mathematics, Left Factorial.
FORMULA
a(n) = A003422(A124375(k) + 1)/2.
MATHEMATICA
f=0; Do[f=f+n!; If[PrimeQ[f/2], Print[{n, f/2}]], {n, 0, 353}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Oct 28 2006
STATUS
approved