OFFSET
1,1
COMMENTS
Conjecture: the sequence is finite.
Corresponding values of numbers k: 0, 2, 2, 4, ...
A Fermat prime from A019434 of the form F(n) = 2^(2^n) + 1 is a term if k = 2^n * log(2) / log(2^n) is an integer.
EXAMPLE
65537 (prime) is in the sequence because 65537 - 1 = (tau(65536) - 1)^4 = 16^4.
PROG
(Magma) [2] cat [n+1: n in [A219338(n)] | IsPrime(n+1)]
(Magma) Set(Sort([n: n in[1..1000000], k in [0..100] | IsPrime(n) and (n-1) eq (NumberOfDivisors(n-1) - 1)^k]))
(PARI) listp(nn) = {print1(p=2, ", "); forprime(p=5, nn, expo = valuation(x=(p-1), y=(numdiv(p-1)-1)); if (x == y^expo, print1(p, ", ")); ); } \\ Michel Marcus, Jun 04 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 29 2015
STATUS
approved