

A281312


Numbers n such that sigma(4*(n1)) is prime.


2



2, 5, 17, 1025, 16385, 65537, 268435457, 288230376151711745, 77371252455336267181195265, 20282409603651670423947251286017, 21267647932558653966460912964485513217
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: the next terms are: 288230376151711745, 77371252455336267181195265, 20282409603651670423947251286017, 21267647932558653966460912964485513217.
Conjecture: prime terms are in A258429: 2, 5, 17, 65537.
Conjecture: corresponding primes p are Mersenne primes (A000668) > 3.
Sigma is multiplicative, and sigma(m) > 1 for all m > 1, so sigma(m) can be prime only if m is a prime power. Hence all n in this sequence are of the form 2^m + 1 for some m >= 0. This proves the above conjectures and leads to an explicit formula (q.v.) in terms of the Mersenne numbers.  Charles R Greathouse IV, Mar 01 2017


LINKS

Table of n, a(n) for n=1..11.


FORMULA

a(n) = 2^(A000043(n+1)3) + 1.  Charles R Greathouse IV, Mar 01 2017


PROG

(MAGMA) [n: n in [2..100000]  IsPrime(SumOfDivisors(4*(n1)))]
(PARI) isok(n) = isprime(sigma(4*(n1))); \\ Michel Marcus, Jan 21 2017


CROSSREFS

Cf. A000203, A000668, A193553, A258429.
Sequence in context: A041455 A081465 A128000 * A182313 A124374 A113617
Adjacent sequences: A281309 A281310 A281311 * A281313 A281314 A281315


KEYWORD

nonn


AUTHOR

Jaroslav Krizek, Jan 19 2017


EXTENSIONS

a(7) = 268435457 confirmed by Jon E. Schoenfield, Jan 20 2017
a(8)a(11) from Charles R Greathouse IV, Mar 01 2017


STATUS

approved



